Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Consolidate sql examples #11173

Closed
wants to merge 10 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 1 addition & 7 deletions datafusion-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@ cargo run --example csv_sql
- [`advanced_udf.rs`](examples/advanced_udf.rs): Define and invoke a more complicated User Defined Scalar Function (UDF)
- [`advanced_udwf.rs`](examples/advanced_udwf.rs): Define and invoke a more complicated User Defined Window Function (UDWF)
- [`advanced_parquet_index.rs`](examples/advanced_parquet_index.rs): Creates a detailed secondary index that covers the contents of several parquet files
- [`avro_sql.rs`](examples/avro_sql.rs): Build and run a query plan from a SQL statement against a local AVRO file
- [`catalog.rs`](examples/catalog.rs): Register the table into a custom catalog
- [`composed_extension_codec`](examples/composed_extension_codec.rs): Example of using multiple extension codecs for serialization / deserialization
- [`csv_sql.rs`](examples/csv_sql.rs): Build and run a query plan from a SQL statement against a local CSV file
Expand All @@ -62,27 +61,22 @@ cargo run --example csv_sql
- [`file_stream_provider.rs`](examples/file_stream_provider.rs): Run a query on `FileStreamProvider` which implements `StreamProvider` for reading and writing to arbitrary stream sources / sinks.
- [`flight_sql_server.rs`](examples/flight/flight_sql_server.rs): Run DataFusion as a standalone process and execute SQL queries from JDBC clients
- [`function_factory.rs`](examples/function_factory.rs): Register `CREATE FUNCTION` handler to implement SQL macros
- [`make_date.rs`](examples/make_date.rs): Examples of using the make_date function
- [`memtable.rs`](examples/memtable.rs): Create an query data in memory using SQL and `RecordBatch`es
- [`optimizer_rule.rs`](examples/optimizer_rule.rs): Use a custom OptimizerRule to replace certain predicates
- [`parquet_index.rs`](examples/parquet_index.rs): Create an secondary index over several parquet files and use it to speed up queries
- [`parquet_sql.rs`](examples/parquet_sql.rs): Build and run a query plan from a SQL statement against a local Parquet file
- [`parquet_sql_multiple_files.rs`](examples/parquet_sql_multiple_files.rs): Build and run a query plan from a SQL statement against multiple local Parquet files
- [`parquet_exec_visitor.rs`](examples/parquet_exec_visitor.rs): Extract statistics by visiting an ExecutionPlan after execution
- [`parse_sql_expr.rs`](examples/parse_sql_expr.rs): Parse SQL text into Datafusion `Expr`.
- [`plan_to_sql.rs`](examples/plan_to_sql.rs): Generate SQL from Datafusion `Expr` and `LogicalPlan`
- [`pruning.rs`](examples/parquet_sql.rs): Use pruning to rule out files based on statistics
- [`query-aws-s3.rs`](examples/external_dependency/query-aws-s3.rs): Configure `object_store` and run a query against files stored in AWS S3
- [`query-http-csv.rs`](examples/query-http-csv.rs): Configure `object_store` and run a query against files vi HTTP
- [`regexp.rs`](examples/regexp.rs): Examples of using regular expression functions
- [`rewrite_expr.rs`](examples/rewrite_expr.rs): Define and invoke a custom Query Optimizer pass
- [`simple_udaf.rs`](examples/simple_udaf.rs): Define and invoke a User Defined Aggregate Function (UDAF)
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined Scalar Function (UDF)
- [`simple_udfw.rs`](examples/simple_udwf.rs): Define and invoke a User Defined Window Function (UDWF)
- [`sql.rs`](examples/sql.rs): Run SQL queries with functions against files, and in memory data
- [`sql_analysis.rs`](examples/sql_analysis.rs): Analyse SQL queries with DataFusion structures
- [`sql_dialect.rs`](examples/sql_dialect.rs): Example of implementing a custom SQL dialect on top of `DFParser`
- [`to_char.rs`](examples/to_char.rs): Examples of using the to_char function
- [`to_timestamp.rs`](examples/to_timestamp.rs): Examples of using to_timestamp functions

## Distributed

Expand Down
51 changes: 0 additions & 51 deletions datafusion-examples/examples/avro_sql.rs

This file was deleted.

156 changes: 154 additions & 2 deletions datafusion-examples/examples/dataframe.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,17 +15,37 @@
// specific language governing permissions and limitations
// under the License.

//! This file contains several examples of how to run queries using DataFusion's
//! DataFrame API:
//!
//! * [`parquet`]: query a single Parquet file
//! * [`to_date_demo`]: use the `to_date` function to convert dates to strings
//! * [`to_timestamp_demo`]: use the `to_timestamp` function to convert strings to timestamps
//! * [`make_date_demo`]: use the `make_date` function to create dates from year, month, and day

use arrow::array::{Int32Array, RecordBatch, StringArray};
use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::error::Result;
use datafusion::prelude::*;
use std::fs::File;
use std::io::Write;
use std::sync::Arc;
use tempfile::tempdir;

/// This example demonstrates executing a simple query against an Arrow data source (Parquet) and
/// fetching results, using the DataFrame trait
#[tokio::main]
async fn main() -> Result<()> {
parquet().await?;
to_date_demo().await?;
to_timestamp_demo().await?;
make_date_demo().await?;

Ok(())
}

/// This example demonstrates executing a simple query against an Arrow data
/// source (Parquet) and fetching results, using the DataFrame trait

async fn parquet() -> Result<()> {
// create local execution context
let ctx = SessionContext::new();

Expand Down Expand Up @@ -109,3 +129,135 @@ async fn example_read_csv_file_with_schema(file_path: &str) -> DataFrame {
// Register a lazy DataFrame by using the context and option provider
ctx.read_csv(file_path, csv_read_option).await.unwrap()
}

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think putting the related functionality together in one example will make it easier for people to find what they are looking for (especially as the number of examples in DataFusion continues to grow)

/// This example demonstrates how to use the to_date series
/// of functions in the DataFrame API
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Some of the consolidated examples had both SQL and dataframe examples, so I split such examples into dataframe.rs and sql.rs

async fn to_date_demo() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Utf8, false)]));

// define data.
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from(vec![
"2020-09-08T13:42:29Z",
"2020-09-08T13:42:29.190855-05:00",
"2020-08-09 12:13:29",
"2020-01-02",
]))],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;

// use to_date function to convert col 'a' to timestamp type using the default parsing
let df = df.with_column("a", to_date(vec![col("a")]))?;

let df = df.select_columns(&["a"])?;

// print the results
df.show().await?;

Ok(())
}

/// This example demonstrates how to use the to_timestamp series
/// of functions in the DataFrame API
async fn to_timestamp_demo() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Utf8, false),
Field::new("b", DataType::Utf8, false),
]));

// define data.
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(StringArray::from(vec![
"2020-09-08T13:42:29Z",
"2020-09-08T13:42:29.190855-05:00",
"2020-08-09 12:13:29",
"2020-01-02",
])),
Arc::new(StringArray::from(vec![
"2020-09-08T13:42:29Z",
"2020-09-08T13:42:29.190855-05:00",
"08-09-2020 13/42/29",
"09-27-2020 13:42:29-05:30",
])),
],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;

// use to_timestamp function to convert col 'a' to timestamp type using the default parsing
let df = df.with_column("a", to_timestamp(vec![col("a")]))?;
// use to_timestamp_seconds function to convert col 'b' to timestamp(Seconds) type using a list
// of chrono formats (https://docs.rs/chrono/latest/chrono/format/strftime/index.html) to try
let df = df.with_column(
"b",
to_timestamp_seconds(vec![
col("b"),
lit("%+"),
lit("%d-%m-%Y %H/%M/%S"),
lit("%m-%d-%Y %H:%M:%S%#z"),
]),
)?;

let df = df.select_columns(&["a", "b"])?;

// print the results
df.show().await?;

Ok(())
}

/// This example demonstrates how to use the make_date
/// function in the DataFrame API as well as via sql.
async fn make_date_demo() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("y", DataType::Int32, false),
Field::new("m", DataType::Int32, false),
Field::new("d", DataType::Int32, false),
]));

// define data.
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(Int32Array::from(vec![2020, 2021, 2022, 2023, 2024])),
Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5])),
Arc::new(Int32Array::from(vec![15, 16, 17, 18, 19])),
],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;

// use make_date function to convert col 'y', 'm' & 'd' to a date
let df = df.with_column("a", make_date(col("y"), col("m"), col("d")))?;
// use make_date function to convert col 'y' & 'm' with a static day to a date
let df = df.with_column("b", make_date(col("y"), col("m"), lit(22)))?;

let df = df.select_columns(&["a", "b"])?;

// print the results
df.show().await?;

Ok(())
}
120 changes: 0 additions & 120 deletions datafusion-examples/examples/make_date.rs

This file was deleted.

Loading
Loading