Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize performance of math::trunc (~2.5x faster) #12909

Merged
merged 2 commits into from
Oct 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions datafusion/functions/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -201,3 +201,8 @@ required-features = ["math_expressions"]
harness = false
name = "strpos"
required-features = ["unicode_expressions"]

[[bench]]
harness = false
name = "trunc"
required-features = ["math_expressions"]
47 changes: 47 additions & 0 deletions datafusion/functions/benches/trunc.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

extern crate criterion;

use arrow::{
datatypes::{Float32Type, Float64Type},
util::bench_util::create_primitive_array,
};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use datafusion_expr::ColumnarValue;
use datafusion_functions::math::trunc;

use std::sync::Arc;

fn criterion_benchmark(c: &mut Criterion) {
let trunc = trunc();
for size in [1024, 4096, 8192] {
let f32_array = Arc::new(create_primitive_array::<Float32Type>(size, 0.2));
let f32_args = vec![ColumnarValue::Array(f32_array)];
c.bench_function(&format!("trunc f32 array: {}", size), |b| {
b.iter(|| black_box(trunc.invoke(&f32_args).unwrap()))
});
let f64_array = Arc::new(create_primitive_array::<Float64Type>(size, 0.2));
let f64_args = vec![ColumnarValue::Array(f64_array)];
c.bench_function(&format!("trunc f64 array: {}", size), |b| {
b.iter(|| black_box(trunc.invoke(&f64_args).unwrap()))
});
}
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);
82 changes: 52 additions & 30 deletions datafusion/functions/src/math/trunc.rs
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,11 @@ use std::sync::{Arc, OnceLock};

use crate::utils::make_scalar_function;

use arrow::array::{ArrayRef, Float32Array, Float64Array, Int64Array};
use arrow::datatypes::DataType;
use arrow::array::{ArrayRef, AsArray, PrimitiveArray};
use arrow::datatypes::DataType::{Float32, Float64};
use arrow::datatypes::{DataType, Float32Type, Float64Type, Int64Type};
use datafusion_common::ScalarValue::Int64;
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_common::{exec_err, Result};
use datafusion_expr::scalar_doc_sections::DOC_SECTION_MATH;
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_expr::TypeSignature::Exact;
Expand Down Expand Up @@ -139,44 +139,66 @@ fn trunc(args: &[ArrayRef]) -> Result<ArrayRef> {
);
}

//if only one arg then invoke toolchain trunc(num) and precision = 0 by default
//or then invoke the compute_truncate method to process precision
// If only one arg then invoke toolchain trunc(num) and precision = 0 by default
// or then invoke the compute_truncate method to process precision
let num = &args[0];
let precision = if args.len() == 1 {
ColumnarValue::Scalar(Int64(Some(0)))
} else {
ColumnarValue::Array(Arc::clone(&args[1]))
};

match args[0].data_type() {
match num.data_type() {
Float64 => match precision {
ColumnarValue::Scalar(Int64(Some(0))) => Ok(Arc::new(
make_function_scalar_inputs!(num, "num", Float64Array, { f64::trunc }),
) as ArrayRef),
ColumnarValue::Array(precision) => Ok(Arc::new(make_function_inputs2!(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've broadened #12923 to cover this too

num,
precision,
"x",
"y",
Float64Array,
Int64Array,
{ compute_truncate64 }
)) as ArrayRef),
ColumnarValue::Scalar(Int64(Some(0))) => {
Ok(Arc::new(
args[0]
.as_primitive::<Float64Type>()
.unary::<_, Float64Type>(|x: f64| {
if x == 0_f64 {
0_f64
} else {
x.trunc()
}
}),
) as ArrayRef)
}
ColumnarValue::Array(precision) => {
let num_array = num.as_primitive::<Float64Type>();
let precision_array = precision.as_primitive::<Int64Type>();
let result: PrimitiveArray<Float64Type> =
arrow::compute::binary(num_array, precision_array, |x, y| {
compute_truncate64(x, y)
})?;

Ok(Arc::new(result) as ArrayRef)
}
_ => exec_err!("trunc function requires a scalar or array for precision"),
},
Float32 => match precision {
ColumnarValue::Scalar(Int64(Some(0))) => Ok(Arc::new(
make_function_scalar_inputs!(num, "num", Float32Array, { f32::trunc }),
) as ArrayRef),
ColumnarValue::Array(precision) => Ok(Arc::new(make_function_inputs2!(
num,
precision,
"x",
"y",
Float32Array,
Int64Array,
{ compute_truncate32 }
)) as ArrayRef),
ColumnarValue::Scalar(Int64(Some(0))) => {
Ok(Arc::new(
args[0]
.as_primitive::<Float32Type>()
.unary::<_, Float32Type>(|x: f32| {
if x == 0_f32 {
0_f32
} else {
x.trunc()
}
}),
) as ArrayRef)
}
ColumnarValue::Array(precision) => {
let num_array = num.as_primitive::<Float32Type>();
let precision_array = precision.as_primitive::<Int64Type>();
let result: PrimitiveArray<Float32Type> =
arrow::compute::binary(num_array, precision_array, |x, y| {
compute_truncate32(x, y)
})?;

Ok(Arc::new(result) as ArrayRef)
}
_ => exec_err!("trunc function requires a scalar or array for precision"),
},
other => exec_err!("Unsupported data type {other:?} for function trunc"),
Expand Down
Loading