Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve performance of find_in_set function #14020

Merged
merged 3 commits into from
Jan 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions datafusion/functions/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -213,3 +213,8 @@ required-features = ["math_expressions"]
harness = false
name = "initcap"
required-features = ["unicode_expressions"]

[[bench]]
harness = false
name = "find_in_set"
required-features = ["unicode_expressions"]
208 changes: 208 additions & 0 deletions datafusion/functions/benches/find_in_set.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

extern crate criterion;

use arrow::array::{StringArray, StringViewArray};
use arrow::datatypes::DataType;
use arrow::util::bench_util::{
create_string_array_with_len, create_string_view_array_with_len,
};
use criterion::{black_box, criterion_group, criterion_main, Criterion, SamplingMode};
use datafusion_common::ScalarValue;
use datafusion_expr::{ColumnarValue, ScalarFunctionArgs};
use rand::distributions::Alphanumeric;
use rand::prelude::StdRng;
use rand::{Rng, SeedableRng};
use std::sync::Arc;
use std::time::Duration;

/// gen_arr(4096, 128, 0.1, 0.1, true) will generate a StringViewArray with
/// 4096 rows, each row containing a string with 128 random characters.
/// around 10% of the rows are null, around 10% of the rows are non-ASCII.
fn gen_args_array(
n_rows: usize,
str_len_chars: usize,
null_density: f32,
utf8_density: f32,
is_string_view: bool, // false -> StringArray, true -> StringViewArray
) -> Vec<ColumnarValue> {
let mut rng = StdRng::seed_from_u64(42);
let rng_ref = &mut rng;

let num_elements = 5; // 5 elements separated by comma
let utf8 = "DataFusionДатаФусион数据融合📊🔥"; // includes utf8 encoding with 1~4 bytes
let corpus_char_count = utf8.chars().count();

let mut output_set_vec: Vec<Option<String>> = Vec::with_capacity(n_rows);
let mut output_element_vec: Vec<Option<String>> = Vec::with_capacity(n_rows);
for _ in 0..n_rows {
let rand_num = rng_ref.gen::<f32>(); // [0.0, 1.0)
if rand_num < null_density {
output_element_vec.push(None);
output_set_vec.push(None);
} else if rand_num < null_density + utf8_density {
// Generate random UTF-8 string with comma separators
let mut generated_string = String::with_capacity(str_len_chars);
for i in 0..num_elements {
for _ in 0..str_len_chars {
let idx = rng_ref.gen_range(0..corpus_char_count);
let char = utf8.chars().nth(idx).unwrap();
generated_string.push(char);
}
if i < num_elements - 1 {
generated_string.push(',');
}
}
output_element_vec.push(Some(random_element_in_set(&generated_string)));
output_set_vec.push(Some(generated_string));
} else {
// Generate random ASCII-only string with comma separators
let mut generated_string = String::with_capacity(str_len_chars);
for i in 0..num_elements {
for _ in 0..str_len_chars {
let c = rng_ref.sample(Alphanumeric);
generated_string.push(c as char);
}
if i < num_elements - 1 {
generated_string.push(',');
}
}
output_element_vec.push(Some(random_element_in_set(&generated_string)));
output_set_vec.push(Some(generated_string));
}
}

if is_string_view {
let set_array: StringViewArray = output_set_vec.into_iter().collect();
let element_array: StringViewArray = output_element_vec.into_iter().collect();
vec![
ColumnarValue::Array(Arc::new(element_array)),
ColumnarValue::Array(Arc::new(set_array)),
]
} else {
let set_array: StringArray = output_set_vec.clone().into_iter().collect();
let element_array: StringArray = output_element_vec.into_iter().collect();
vec![
ColumnarValue::Array(Arc::new(element_array)),
ColumnarValue::Array(Arc::new(set_array)),
]
}
}

fn random_element_in_set(string: &str) -> String {
let elements: Vec<&str> = string.split(',').collect();

if elements.is_empty() || (elements.len() == 1 && elements[0].is_empty()) {
return String::new();
}

let mut rng = StdRng::seed_from_u64(44);
let random_index = rng.gen_range(0..elements.len());

elements[random_index].to_string()
}

fn gen_args_scalar(
n_rows: usize,
str_len_chars: usize,
null_density: f32,
is_string_view: bool, // false -> StringArray, true -> StringViewArray
) -> Vec<ColumnarValue> {
let str_list = "Apache,DataFusion,SQL,Query,Engine".to_string();
if is_string_view {
let string =
create_string_view_array_with_len(n_rows, null_density, str_len_chars, false);
vec![
ColumnarValue::Array(Arc::new(string)),
ColumnarValue::Scalar(ScalarValue::Utf8(Some(str_list))),
]
} else {
let string =
create_string_array_with_len::<i32>(n_rows, null_density, str_len_chars);
vec![
ColumnarValue::Array(Arc::new(string)),
ColumnarValue::Scalar(ScalarValue::Utf8(Some(str_list))),
]
}
}

fn criterion_benchmark(c: &mut Criterion) {
// All benches are single batch run with 8192 rows
let find_in_set = datafusion_functions::unicode::find_in_set();

let n_rows = 8192;
for str_len in [8, 32, 1024] {
let mut group = c.benchmark_group("find_in_set");
group.sampling_mode(SamplingMode::Flat);
group.sample_size(50);
group.measurement_time(Duration::from_secs(10));

let args = gen_args_array(n_rows, str_len, 0.1, 0.5, false);
group.bench_function(format!("string_len_{}", str_len), |b| {
b.iter(|| {
black_box(find_in_set.invoke_with_args(ScalarFunctionArgs {
args: args.clone(),
number_rows: n_rows,
return_type: &DataType::Int32,
}))
})
});

let args = gen_args_array(n_rows, str_len, 0.1, 0.5, true);
group.bench_function(format!("string_view_len_{}", str_len), |b| {
b.iter(|| {
black_box(find_in_set.invoke_with_args(ScalarFunctionArgs {
args: args.clone(),
number_rows: n_rows,
return_type: &DataType::Int32,
}))
})
});

group.finish();

let mut group = c.benchmark_group("find_in_set_scalar");

let args = gen_args_scalar(n_rows, str_len, 0.1, false);
group.bench_function(format!("string_len_{}", str_len), |b| {
b.iter(|| {
black_box(find_in_set.invoke_with_args(ScalarFunctionArgs {
args: args.clone(),
number_rows: n_rows,
return_type: &DataType::Int32,
}))
})
});

let args = gen_args_scalar(n_rows, str_len, 0.1, true);
group.bench_function(format!("string_view_len_{}", str_len), |b| {
b.iter(|| {
black_box(find_in_set.invoke_with_args(ScalarFunctionArgs {
args: args.clone(),
number_rows: n_rows,
return_type: &DataType::Int32,
}))
})
});

group.finish();
}
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);
Loading
Loading