-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Split count_distinct.rs into separate modules #9087
Merged
Merged
Changes from 3 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
59777d9
Split count_distinct.rs into separate modules
alamb 1107909
Remove unecessary typedef
alamb f0a5ac2
Rename
alamb fa9bc83
Merge remote-tracking branch 'apache/main' into alamb/split_distinct
alamb 1edf4f0
improve module comments
alamb File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,39 +15,36 @@ | |
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
mod native; | ||
mod strings; | ||
|
||
use std::any::Any; | ||
use std::cmp::Eq; | ||
use std::collections::HashSet; | ||
use std::fmt::Debug; | ||
use std::hash::Hash; | ||
use std::sync::Arc; | ||
|
||
use ahash::RandomState; | ||
use arrow::array::{Array, ArrayRef}; | ||
use arrow::datatypes::{DataType, Field, TimeUnit}; | ||
use arrow_array::types::{ | ||
ArrowPrimitiveType, Date32Type, Date64Type, Decimal128Type, Decimal256Type, | ||
Float16Type, Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, | ||
Time32MillisecondType, Time32SecondType, Time64MicrosecondType, Time64NanosecondType, | ||
Date32Type, Date64Type, Decimal128Type, Decimal256Type, Float16Type, Float32Type, | ||
Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, Time32MillisecondType, | ||
Time32SecondType, Time64MicrosecondType, Time64NanosecondType, | ||
TimestampMicrosecondType, TimestampMillisecondType, TimestampNanosecondType, | ||
TimestampSecondType, UInt16Type, UInt32Type, UInt64Type, UInt8Type, | ||
}; | ||
use arrow_array::PrimitiveArray; | ||
|
||
use datafusion_common::cast::{as_list_array, as_primitive_array}; | ||
use datafusion_common::utils::array_into_list_array; | ||
use datafusion_common::{Result, ScalarValue}; | ||
use datafusion_expr::Accumulator; | ||
|
||
use crate::aggregate::count_distinct::native::{ | ||
FloatDistinctCountAccumulator, PrimitiveDistinctCountAccumulator, | ||
}; | ||
use crate::aggregate::count_distinct::strings::StringDistinctCountAccumulator; | ||
use crate::aggregate::utils::{down_cast_any_ref, Hashable}; | ||
use crate::aggregate::utils::down_cast_any_ref; | ||
use crate::expressions::format_state_name; | ||
use crate::{AggregateExpr, PhysicalExpr}; | ||
|
||
type DistinctScalarValues = ScalarValue; | ||
|
||
/// Expression for a COUNT(DISTINCT) aggregation. | ||
#[derive(Debug)] | ||
pub struct DistinctCount { | ||
|
@@ -101,46 +98,46 @@ impl AggregateExpr for DistinctCount { | |
use TimeUnit::*; | ||
|
||
Ok(match &self.state_data_type { | ||
Int8 => Box::new(NativeDistinctCountAccumulator::<Int8Type>::new()), | ||
Int16 => Box::new(NativeDistinctCountAccumulator::<Int16Type>::new()), | ||
Int32 => Box::new(NativeDistinctCountAccumulator::<Int32Type>::new()), | ||
Int64 => Box::new(NativeDistinctCountAccumulator::<Int64Type>::new()), | ||
UInt8 => Box::new(NativeDistinctCountAccumulator::<UInt8Type>::new()), | ||
UInt16 => Box::new(NativeDistinctCountAccumulator::<UInt16Type>::new()), | ||
UInt32 => Box::new(NativeDistinctCountAccumulator::<UInt32Type>::new()), | ||
UInt64 => Box::new(NativeDistinctCountAccumulator::<UInt64Type>::new()), | ||
Int8 => Box::new(PrimitiveDistinctCountAccumulator::<Int8Type>::new()), | ||
Int16 => Box::new(PrimitiveDistinctCountAccumulator::<Int16Type>::new()), | ||
Int32 => Box::new(PrimitiveDistinctCountAccumulator::<Int32Type>::new()), | ||
Int64 => Box::new(PrimitiveDistinctCountAccumulator::<Int64Type>::new()), | ||
UInt8 => Box::new(PrimitiveDistinctCountAccumulator::<UInt8Type>::new()), | ||
UInt16 => Box::new(PrimitiveDistinctCountAccumulator::<UInt16Type>::new()), | ||
UInt32 => Box::new(PrimitiveDistinctCountAccumulator::<UInt32Type>::new()), | ||
UInt64 => Box::new(PrimitiveDistinctCountAccumulator::<UInt64Type>::new()), | ||
Decimal128(_, _) => { | ||
Box::new(NativeDistinctCountAccumulator::<Decimal128Type>::new()) | ||
Box::new(PrimitiveDistinctCountAccumulator::<Decimal128Type>::new()) | ||
} | ||
Decimal256(_, _) => { | ||
Box::new(NativeDistinctCountAccumulator::<Decimal256Type>::new()) | ||
Box::new(PrimitiveDistinctCountAccumulator::<Decimal256Type>::new()) | ||
} | ||
|
||
Date32 => Box::new(NativeDistinctCountAccumulator::<Date32Type>::new()), | ||
Date64 => Box::new(NativeDistinctCountAccumulator::<Date64Type>::new()), | ||
Time32(Millisecond) => { | ||
Box::new(NativeDistinctCountAccumulator::<Time32MillisecondType>::new()) | ||
} | ||
Date32 => Box::new(PrimitiveDistinctCountAccumulator::<Date32Type>::new()), | ||
Date64 => Box::new(PrimitiveDistinctCountAccumulator::<Date64Type>::new()), | ||
Time32(Millisecond) => Box::new(PrimitiveDistinctCountAccumulator::< | ||
Time32MillisecondType, | ||
>::new()), | ||
Time32(Second) => { | ||
Box::new(NativeDistinctCountAccumulator::<Time32SecondType>::new()) | ||
} | ||
Time64(Microsecond) => { | ||
Box::new(NativeDistinctCountAccumulator::<Time64MicrosecondType>::new()) | ||
Box::new(PrimitiveDistinctCountAccumulator::<Time32SecondType>::new()) | ||
} | ||
Time64(Microsecond) => Box::new(PrimitiveDistinctCountAccumulator::< | ||
Time64MicrosecondType, | ||
>::new()), | ||
Time64(Nanosecond) => { | ||
Box::new(NativeDistinctCountAccumulator::<Time64NanosecondType>::new()) | ||
Box::new(PrimitiveDistinctCountAccumulator::<Time64NanosecondType>::new()) | ||
} | ||
Timestamp(Microsecond, _) => Box::new(NativeDistinctCountAccumulator::< | ||
Timestamp(Microsecond, _) => Box::new(PrimitiveDistinctCountAccumulator::< | ||
TimestampMicrosecondType, | ||
>::new()), | ||
Timestamp(Millisecond, _) => Box::new(NativeDistinctCountAccumulator::< | ||
Timestamp(Millisecond, _) => Box::new(PrimitiveDistinctCountAccumulator::< | ||
TimestampMillisecondType, | ||
>::new()), | ||
Timestamp(Nanosecond, _) => { | ||
Box::new(NativeDistinctCountAccumulator::<TimestampNanosecondType>::new()) | ||
} | ||
Timestamp(Nanosecond, _) => Box::new(PrimitiveDistinctCountAccumulator::< | ||
TimestampNanosecondType, | ||
>::new()), | ||
Timestamp(Second, _) => { | ||
Box::new(NativeDistinctCountAccumulator::<TimestampSecondType>::new()) | ||
Box::new(PrimitiveDistinctCountAccumulator::<TimestampSecondType>::new()) | ||
} | ||
|
||
Float16 => Box::new(FloatDistinctCountAccumulator::<Float16Type>::new()), | ||
|
@@ -175,9 +172,13 @@ impl PartialEq<dyn Any> for DistinctCount { | |
} | ||
} | ||
|
||
/// General purpose distinct accumulator that works for any DataType by using | ||
/// [`ScalarValue`]. Some types have specialized accumulators that are (much) | ||
/// more efficient such as [`PrimitiveDistinctCountAccumulator`] and | ||
/// [`StringDistinctCountAccumulator`] | ||
#[derive(Debug)] | ||
struct DistinctCountAccumulator { | ||
values: HashSet<DistinctScalarValues, RandomState>, | ||
values: HashSet<ScalarValue, RandomState>, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This was typedefd to type DistinctScalarValues = ScalarValue; Which serves no purpose that I can tell other than obscuring what this code is doing |
||
state_data_type: DataType, | ||
} | ||
|
||
|
@@ -186,7 +187,7 @@ impl DistinctCountAccumulator { | |
// This method is faster than .full_size(), however it is not suitable for variable length values like strings or complex types | ||
fn fixed_size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
+ (std::mem::size_of::<DistinctScalarValues>() * self.values.capacity()) | ||
+ (std::mem::size_of::<ScalarValue>() * self.values.capacity()) | ||
+ self | ||
.values | ||
.iter() | ||
|
@@ -199,7 +200,7 @@ impl DistinctCountAccumulator { | |
// calculates the size as accurate as possible, call to this method is expensive | ||
fn full_size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
+ (std::mem::size_of::<DistinctScalarValues>() * self.values.capacity()) | ||
+ (std::mem::size_of::<ScalarValue>() * self.values.capacity()) | ||
+ self | ||
.values | ||
.iter() | ||
|
@@ -260,182 +261,6 @@ impl Accumulator for DistinctCountAccumulator { | |
} | ||
} | ||
|
||
#[derive(Debug)] | ||
struct NativeDistinctCountAccumulator<T> | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Moved to native.rs |
||
where | ||
T: ArrowPrimitiveType + Send, | ||
T::Native: Eq + Hash, | ||
{ | ||
values: HashSet<T::Native, RandomState>, | ||
} | ||
|
||
impl<T> NativeDistinctCountAccumulator<T> | ||
where | ||
T: ArrowPrimitiveType + Send, | ||
T::Native: Eq + Hash, | ||
{ | ||
fn new() -> Self { | ||
Self { | ||
values: HashSet::default(), | ||
} | ||
} | ||
} | ||
|
||
impl<T> Accumulator for NativeDistinctCountAccumulator<T> | ||
where | ||
T: ArrowPrimitiveType + Send + Debug, | ||
T::Native: Eq + Hash, | ||
{ | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
let arr = Arc::new(PrimitiveArray::<T>::from_iter_values( | ||
self.values.iter().cloned(), | ||
)) as ArrayRef; | ||
let list = Arc::new(array_into_list_array(arr)); | ||
Ok(vec![ScalarValue::List(list)]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
if values.is_empty() { | ||
return Ok(()); | ||
} | ||
|
||
let arr = as_primitive_array::<T>(&values[0])?; | ||
arr.iter().for_each(|value| { | ||
if let Some(value) = value { | ||
self.values.insert(value); | ||
} | ||
}); | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
if states.is_empty() { | ||
return Ok(()); | ||
} | ||
assert_eq!( | ||
states.len(), | ||
1, | ||
"count_distinct states must be single array" | ||
); | ||
|
||
let arr = as_list_array(&states[0])?; | ||
arr.iter().try_for_each(|maybe_list| { | ||
if let Some(list) = maybe_list { | ||
let list = as_primitive_array::<T>(&list)?; | ||
self.values.extend(list.values()) | ||
}; | ||
Ok(()) | ||
}) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
Ok(ScalarValue::Int64(Some(self.values.len() as i64))) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
let estimated_buckets = (self.values.len().checked_mul(8).unwrap_or(usize::MAX) | ||
/ 7) | ||
.next_power_of_two(); | ||
|
||
// Size of accumulator | ||
// + size of entry * number of buckets | ||
// + 1 byte for each bucket | ||
// + fixed size of HashSet | ||
std::mem::size_of_val(self) | ||
+ std::mem::size_of::<T::Native>() * estimated_buckets | ||
+ estimated_buckets | ||
+ std::mem::size_of_val(&self.values) | ||
} | ||
} | ||
|
||
#[derive(Debug)] | ||
struct FloatDistinctCountAccumulator<T> | ||
where | ||
T: ArrowPrimitiveType + Send, | ||
{ | ||
values: HashSet<Hashable<T::Native>, RandomState>, | ||
} | ||
|
||
impl<T> FloatDistinctCountAccumulator<T> | ||
where | ||
T: ArrowPrimitiveType + Send, | ||
{ | ||
fn new() -> Self { | ||
Self { | ||
values: HashSet::default(), | ||
} | ||
} | ||
} | ||
|
||
impl<T> Accumulator for FloatDistinctCountAccumulator<T> | ||
where | ||
T: ArrowPrimitiveType + Send + Debug, | ||
{ | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
let arr = Arc::new(PrimitiveArray::<T>::from_iter_values( | ||
self.values.iter().map(|v| v.0), | ||
)) as ArrayRef; | ||
let list = Arc::new(array_into_list_array(arr)); | ||
Ok(vec![ScalarValue::List(list)]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
if values.is_empty() { | ||
return Ok(()); | ||
} | ||
|
||
let arr = as_primitive_array::<T>(&values[0])?; | ||
arr.iter().for_each(|value| { | ||
if let Some(value) = value { | ||
self.values.insert(Hashable(value)); | ||
} | ||
}); | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
if states.is_empty() { | ||
return Ok(()); | ||
} | ||
assert_eq!( | ||
states.len(), | ||
1, | ||
"count_distinct states must be single array" | ||
); | ||
|
||
let arr = as_list_array(&states[0])?; | ||
arr.iter().try_for_each(|maybe_list| { | ||
if let Some(list) = maybe_list { | ||
let list = as_primitive_array::<T>(&list)?; | ||
self.values | ||
.extend(list.values().iter().map(|v| Hashable(*v))); | ||
}; | ||
Ok(()) | ||
}) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
Ok(ScalarValue::Int64(Some(self.values.len() as i64))) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
let estimated_buckets = (self.values.len().checked_mul(8).unwrap_or(usize::MAX) | ||
/ 7) | ||
.next_power_of_two(); | ||
|
||
// Size of accumulator | ||
// + size of entry * number of buckets | ||
// + 1 byte for each bucket | ||
// + fixed size of HashSet | ||
std::mem::size_of_val(self) | ||
+ std::mem::size_of::<T::Native>() * estimated_buckets | ||
+ estimated_buckets | ||
+ std::mem::size_of_val(&self.values) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use arrow::array::{ | ||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Renamed