This repository is the entry point for all things AIM, a family of autoregressive models that push the boundaries of visual and multimodal learning:
- AIMv2:
Multimodal Autoregressive Pre-training of Large Vision Encoders
[BibTeX
]
Enrico Fini*, Mustafa Shukor*, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, and Alaaeldin El-Nouby* - AIMv1:
Scalable Pre-training of Large Autoregressive Image Models
[BibTeX
]
Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar, Joshua M Susskind, Armand Joulin.
*: Equal technical contribution
If you're looking for the original AIM model (AIMv1), please refer to the README here.
We introduce the AIMv2 family of vision models pre-trained with a multimodal autoregressive objective. AIMv2 pre-training is simple and straightforward to train and to scale effectively. Some AIMv2 highlights include:
- Outperforms OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks.
- Outperforms DINOv2 on open-vocabulary object detection and referring expression comprehension.
- Exhibits strong recognition performance with AIMv2-3B achieving 89.5% on ImageNet using a frozen trunk.
We share with the community AIMv2 pre-trained checkpoints of varying capacities, pre-training resolutions:
- [
AIMv2 with 224px
] - [
AIMv2 with 336px
] - [
AIMv2 with 448px
] - [
AIMv2 with Native Resolution
] - [
AIMv2 distilled ViT-Large
] (recommended for multimodal applications) - [
Zero-shot Adapted AIMv2
]
Please install PyTorch using the official installation instructions. Afterward, install the package as:
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v1'
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'
We also offer MLX backend support for research and experimentation on Apple silicon. To enable MLX support, simply run:
pip install mlx
from PIL import Image
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms
img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)
inp = transform(img).unsqueeze(0)
features = model(inp)
from PIL import Image
import mlx.core as mx
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms
img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="mlx")
transform = val_transforms(img_size=336)
inp = transform(img).unsqueeze(0)
inp = mx.array(inp.numpy())
features = model(inp)
from PIL import Image
import jax.numpy as jnp
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms
img = Image.open(...)
model, params = load_pretrained("aimv2-large-patch14-336", backend="jax")
transform = val_transforms(img_size=336)
inp = transform(img).unsqueeze(0)
inp = jnp.array(inp)
features = model.apply({"params": params}, inp)
The pre-trained models can be accessed via HuggingFace Hub as:
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
image = Image.open(...)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-336")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-336", trust_remote_code=True)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
model_id | #params | IN-1k | HF Link | Backbone |
---|---|---|---|---|
aimv2-large-patch14-224 | 0.3B | 86.6 | 🤗link | link |
aimv2-huge-patch14-224 | 0.6B | 87.5 | 🤗link | link |
aimv2-1B-patch14-224 | 1.2B | 88.1 | 🤗link | link |
aimv2-3B-patch14-224 | 2.7B | 88.5 | 🤗link | link |
model_id | #params | IN-1k | HF Link | Backbone |
---|---|---|---|---|
aimv2-large-patch14-336 | 0.3B | 87.6 | 🤗link | link |
aimv2-huge-patch14-336 | 0.6B | 88.2 | 🤗link | link |
aimv2-1B-patch14-336 | 1.2B | 88.7 | 🤗link | link |
aimv2-3B-patch14-336 | 2.7B | 89.2 | 🤗link | link |
model_id | #params | IN-1k | HF Link | Backbone |
---|---|---|---|---|
aimv2-large-patch14-448 | 0.3B | 87.9 | 🤗link | link |
aimv2-huge-patch14-448 | 0.6B | 88.6 | 🤗link | link |
aimv2-1B-patch14-448 | 1.2B | 89.0 | 🤗link | link |
aimv2-3B-patch14-448 | 2.7B | 89.5 | 🤗link | link |
We additionally provide an AIMv2-L checkpoint that is finetuned to process a wide range of image resolutions and aspect ratios. Regardless of the aspect ratio, the image is patchified (patch_size=14) and a 2D sinusoidal positional embedding is added to the linearly projected input patches. This checkpoint supports number of patches in the range of [112, 4096].
model_id | #params | IN-1k | HF Link | Backbone |
---|---|---|---|---|
aimv2-large-patch14-native | 0.3B | 87.3 | 🤗link | link |
We provide an AIMv2-L checkpoint distilled from AIMv2-3B that provides a remarkable performance for multimodal understanding benchmarks.
Model | VQAv2 | GQA | OKVQA | TextVQA | DocVQA | InfoVQA | ChartQA | SciQA | MMEp |
---|---|---|---|---|---|---|---|---|---|
AIMv2-L | 80.2 | 72.6 | 60.9 | 53.9 | 26.8 | 22.4 | 20.3 | 74.5 | 1457 |
AIMv2-L-distilled | 81.1 | 73.0 | 61.4 | 53.5 | 29.2 | 23.3 | 24.0 | 76.3 | 1627 |
model_id | #params | Res. | HF Link | Backbone |
---|---|---|---|---|
aimv2-large-patch14-224-distilled | 0.3B | 224px | 🤗link | link |
aimv2-large-patch14-336-distilled | 0.3B | 336px | 🤗link | link |
We provide the AIMv2-L vision and text encoders after LiT tuning to enable zero-shot recognition.
model | #params | zero-shot IN1-k | Backbone |
---|---|---|---|
AIMv2-L | 0.3B | 77.0 | link |
If you find our work useful, please consider citing us as:
@misc{fini2024multimodal,
title={Multimodal Autoregressive Pre-training of Large Vision Encoders},
author={Enrico Fini and Mustafa Shukor and Xiujun Li and Philipp Dufter and Michal Klein and David Haldimann and Sai Aitharaju and Victor Guilherme Turrisi da Costa and Louis Béthune and Zhe Gan and Alexander T Toshev and Marcin Eichner and Moin Nabi and Yinfei Yang and Joshua M. Susskind and Alaaeldin El-Nouby},
year={2024},
eprint={2411.14402},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{pmlr-v235-el-nouby24a,
title = {Scalable Pre-training of Large Autoregressive Image Models},
author = {El-Nouby, Alaaeldin and Klein, Michal and Zhai, Shuangfei and Bautista, Miguel \'{A}ngel and Shankar, Vaishaal and Toshev, Alexander T and Susskind, Joshua M. and Joulin, Armand},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
pages = {12371--12384},
year = {2024},
}
Please check out the repository LICENSE before using the provided code and models.