This repo contains code for testing model baselines on ARC-AGI. The input data is a folder containing individual files for ARC-AGI tasks.
git clone https://github.com/arcprizeorg/model_baseline.git
git submodule update --init
pip install -r requirements.txt
To test a single task, run:
python3 -m main --data_dir data/arc-agi/data/evaluation --provider anthropic --model claude-3-5-sonnet-20241022 --task_id 0a1d4ef5 --print_logs
Use the optional parameters to save and print the submission:
python3 -m main --data_dir data/arc-agi/data/evaluation --provider anthropic --model claude-3-5-sonnet-20241022 --task_id {} --save_submission_dir submissions/claude_sonnet_20241022 --print_logs
This will write one <id>.json
file per task.
Testing multiple tasks in a single run can be slow. You can use the your parallel technique of choice to speed this up.
For example with the parallel
command:
brew install parallel
parallel --jobs 20 --progress python3 -m main --data_dir data/arc-agi/data/evaluation --provider anthropic --model claude-3-5-sonnet-20241022 --task_id {} --save_submission_dir submissions/claude_sonnet_20241022 --print_logs :::: ./data/task_lists/public_evaluation.txt
Note: In order to use parllel you'll need a list of task ids. generate_tasks_list.py
helps with this. Public data task ids are already supplied.
python3 -m src.utils.generate_tasks_list --task_dir data/arc-agi/data/training --output_file data/task_lists/public_training
You can score your submissions by pointing the scoring script at your submissions directory:
python3 -m src.scoring.scoring --task_dir data/arc-agi/data/evaluation --submission_dir submissions/claude_sonnet_20241022 --print_logs --results_dir results/claude_sonnet_20241022
Note: You'll also need to tell the script which task set to score.
Results are stored in the results
folder. You can view historical results for models here.
This repo is welcome to contributions!
Specifically, we would love help adding more model adapters to the src/adapters
folder.
More will get added by the ARC-AGI team, but we'll also gladly accept contributions from the community.
For more information visit the ARC Prize.
Validate model outputs against task sets:
# Basic validation
python cli/main.py validate data/arc-agi/data/evaluation submissions/open_ai_o1_high_20241217
# Validate another model's outputs
python cli/main.py validate data/arc-agi/data/evaluation submissions/claude_sonnet_20241022
Upload a single model's outputs to a task set repository:
# Basic upload (private repository)
python cli/main.py upload submissions/open_ai_o1_high_20241217 --task-set public_eval_v1
# Upload to a different organization
python cli/main.py upload submissions/claude_sonnet_20241022 --task-set public_eval_v1 --org your-org-name
# Create a public repository
python cli/main.py upload submissions/deepseek_v3 --task-set public_eval_v1 --public
Upload multiple model outputs at once:
# Upload all models in submissions directory (private repository)
python cli/main.py bulk-upload submissions/ --task-set public_eval_v1
# Upload to a different organization
python cli/main.py bulk-upload submissions/ --task-set public_eval_v1 --org your-org-name
# Create a public repository
python cli/main.py bulk-upload submissions/ --task-set public_eval_v1 --public
Notes:
- All uploads create private repositories by default
- Use
--public
flag to create public repositories - Files are uploaded to subdirectories matching model names
- Default organization is "arcprize"
Before uploading, you'll need to authenticate with Hugging Face:
- Get your access token from https://huggingface.co/settings/tokens
- Set up authentication using either method:
# Option 1: Environment variable export HUGGING_FACE_HUB_TOKEN=your_token_here # Option 2: CLI login huggingface-cli login
The upload process organizes submissions by task sets. Each task set (e.g., public_eval_v1) becomes a separate dataset repository on Hugging Face, with model submissions organized in subdirectories.
Structure:
task_set_name/
├── model_name_1/
│ ├── result1.json
│ ├── result2.json
├── model_name_2/
│ ├── result1.json
│ └── result2.json
To upload model outputs:
python cli/main.py upload submissions/model_name --task-set task_set_name [--org organization] [--public]
For example:
python cli/main.py upload submissions/open_ai_o1_high_20241217 --task-set public_eval_v1
To upload multiple model outputs at once:
python cli/main.py bulk-upload submissions/ --task-set task_set_name [--org organization] [--public]