Adding Native Dali Data Loader support for TFRecord, Images, and NPZ files #762
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Python Package using Conda | |
on: | |
pull_request: | |
branches: [ main, dev ] | |
push: | |
jobs: | |
build-and-test: | |
strategy: | |
fail-fast: false | |
matrix: | |
os: [ ubuntu-20.04, ubuntu-22.04 ] | |
profiler: [ 0, 1 ] | |
gcc: [10] | |
python: ["3.8", "3.9", "3.10" ] | |
name: ${{ matrix.os }}-${{ matrix.profiler }}-${{ matrix.gcc }}-${{ matrix.python }} | |
runs-on: ${{ matrix.os }} | |
env: | |
VENV: "/home/runner/work/venv" | |
DLIO_PROFILER_ENABLE: ${{ matrix.profiler }} | |
CC: gcc-${{ matrix.gcc }} | |
CXX: g++-${{ matrix.gcc }} | |
RDMAV_FORK_SAFE: "1" | |
PYTHON_VER: ${{ matrix.python }} | |
DLIO_PROFILER_LOG_LEVEL: "INFO" | |
GOTCHA_DEBUG: 3 | |
steps: | |
- name: Push checkout | |
if: github.event_name == 'push' | |
uses: actions/checkout@v3 | |
- name: PR checkout | |
if: github.event_name == 'pull_request' | |
uses: actions/checkout@v3 | |
with: | |
ref: ${{ github.event.pull_request.head.sha }} | |
- name: Set up Python ${{ matrix.python }} | |
uses: actions/setup-python@v3 | |
with: | |
python-version: ${{ matrix.python }} | |
- name: Cache install modules | |
id: cache-modules | |
uses: actions/cache@v3 | |
with: | |
path: ${{ env.VENV }} | |
key: ${{env.VENV }}-${{env.DLIO_PROFILER}}-${{ matrix.gcc }}-${{ matrix.python }}-${{ hashFiles('setup.py') }} | |
- name: Install System Tools | |
run: | | |
sudo apt update | |
sudo apt-get install $CC $CXX libc6 git | |
sudo apt-get install mpich libhwloc-dev | |
- name: Install DLIO code only | |
if: steps.cache-modules.outputs.cache-hit == 'true' | |
run: | | |
source ${VENV}/bin/activate | |
rm -rf *.egg* | |
rm -rf build | |
rm -rf dist | |
pip uninstall -y dlio_benchmark | |
python setup.py build | |
python setup.py install | |
- name: Install DLIO | |
if: steps.cache-modules.outputs.cache-hit != 'true' | |
run: | | |
echo "Profiler ${DLIO_PROFILER} gcc $CC" | |
python -m pip install --upgrade pip | |
pip install virtualenv | |
python -m venv ${VENV} | |
source ${VENV}/bin/activate | |
pip install .[test] | |
- name: Install DLIO Profiler | |
run: | | |
echo "Profiler ${DLIO_PROFILER} gcc $CC" | |
source ${VENV}/bin/activate | |
pip install --force-reinstall dlio-profiler-py==0.0.2 | |
- name: test_gen_data | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_gen_data[png-tensorflow] -v | |
mpirun -np 2 pytest -k test_gen_data[npz-tensorflow] -v | |
mpirun -np 2 pytest -k test_gen_data[jpeg-tensorflow] -v | |
mpirun -np 2 pytest -k test_gen_data[tfrecord-tensorflow] -v | |
mpirun -np 2 pytest -k test_gen_data[hdf5-tensorflow] -v | |
- name: test_custom_storage_root_gen_data | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_storage_root_gen_data[png-tensorflow] -v | |
mpirun -np 2 pytest -k test_storage_root_gen_data[npz-tensorflow] -v | |
mpirun -np 2 pytest -k test_storage_root_gen_data[jpeg-tensorflow] -v | |
mpirun -np 2 pytest -k test_storage_root_gen_data[tfrecord-tensorflow] -v | |
mpirun -np 2 pytest -k test_storage_root_gen_data[hdf5-tensorflow] -v | |
- name: test_train | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_train[png-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[npz-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[jpeg-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[tfrecord-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[hdf5-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[csv-tensorflow-tensorflow] -v | |
mpirun -np 2 pytest -k test_train[png-pytorch-pytorch] -v | |
mpirun -np 2 pytest -k test_train[npz-pytorch-pytorch] -v | |
mpirun -np 2 pytest -k test_train[jpeg-pytorch-pytorch] -v | |
mpirun -np 2 pytest -k test_train[hdf5-pytorch-pytorch] -v | |
mpirun -np 2 pytest -k test_train[csv-pytorch-pytorch] -v | |
mpirun -np 2 pytest -k test_train[png-tensorflow-dali] -v | |
mpirun -np 2 pytest -k test_train[npz-tensorflow-dali] -v | |
mpirun -np 2 pytest -k test_train[jpeg-tensorflow-dali] -v | |
mpirun -np 2 pytest -k test_train[hdf5-tensorflow-dali] -v | |
mpirun -np 2 pytest -k test_train[csv-tensorflow-dali] -v | |
mpirun -np 2 pytest -k test_train[png-pytorch-dali] -v | |
mpirun -np 2 pytest -k test_train[npz-pytorch-dali] -v | |
mpirun -np 2 pytest -k test_train[jpeg-pytorch-dali] -v | |
mpirun -np 2 pytest -k test_train[hdf5-pytorch-dali] -v | |
mpirun -np 2 pytest -k test_train[csv-pytorch-dali] -v | |
- name: test_custom_storage_root_train | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_custom_storage_root_train[png-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[npz-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[jpeg-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[tfrecord-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[hdf5-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[csv-tensorflow] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[png-pytorch] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[npz-pytorch] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[jpeg-pytorch] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[hdf5-pytorch] -v | |
mpirun -np 2 pytest -k test_custom_storage_root_train[csv-pytorch] -v | |
- name: test_checkpoint_epoch | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_checkpoint_epoch -v | |
- name: test_checkpoint_step | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_checkpoint_step -v | |
- name: test_eval | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_eval -v | |
- name: test_multi_threads | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_multi_threads[tensorflow-0] -v | |
mpirun -np 2 pytest -k test_multi_threads[tensorflow-1] -v | |
mpirun -np 2 pytest -k test_multi_threads[tensorflow-2] -v | |
mpirun -np 2 pytest -k test_multi_threads[pytorch-0] -v | |
mpirun -np 2 pytest -k test_multi_threads[pytorch-1] -v | |
mpirun -np 2 pytest -k test_multi_threads[pytorch-2] -v | |
- name: test-tf-loader-tfrecord | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 dlio_benchmark workload=resnet50 ++workload.dataset.num_files_train=64 ++workload.workflow.train=False ++workload.workflow.generate_data=True ++workload.dataset.num_files_train=4 ++workload.dataset.num_samples_per_file=16 | |
mpirun -np 2 dlio_benchmark workload=resnet50 ++workload.dataset.num_files_train=64 ++workload.workflow.train=True ++workload.workflow.generate_data=False ++workload.dataset.num_files_train=4 ++workload.dataset.num_samples_per_file=16 ++workload.train.computation_time=0.01 ++workload.train.epochs=1 | |
- name: test-torch-loader-npz | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.workflow.train=False ++workload.workflow.generate_data=True ++workload.dataset.num_files_train=8 ++workload.dataset.num_files_eval=8 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=1 ++workload.workflow.train=True ++workload.workflow.generate_data=False ++workload.dataset.num_files_train=8 ++workload.dataset.num_files_eval=8 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
- name: test-tf-loader-npz | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.framework=tensorflow ++workload.data_reader.data_loader=tensorflow ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=2 ++workload.workflow.train=False ++workload.workflow.generate_data=True ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.framework=tensorflow ++workload.data_reader.data_loader=tensorflow ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=2 ++workload.workflow.train=True ++workload.workflow.generate_data=False ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
- name: test-torch-native-dali-loader-npy | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.reader.data_loader=native_dali ++workload.dataset.format=npy ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=1 ++workload.workflow.train=False ++workload.workflow.generate_data=True ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.reader.data_loader=native_dali ++workload.dataset.format=npy ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=1 ++workload.workflow.train=True ++workload.workflow.generate_data=False ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
- name: test-tf-native-dali-loader-npy | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.framework=tensorflow ++workload.dataset.format=npy ++workload.reader.data_loader=native_dali ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=1 ++workload.workflow.train=False ++workload.workflow.generate_data=True ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
mpirun -np 2 dlio_benchmark workload=unet3d ++workload.framework=tensorflow ++workload.dataset.format=npy ++workload.reader.data_loader=native_dali ++workload.train.computation_time=0.05 ++workload.evaluation.eval_time=0.01 ++workload.train.epochs=1 ++workload.workflow.train=True ++workload.workflow.generate_data=False ++workload.dataset.num_files_train=16 ++workload.dataset.num_files_eval=16 ++workload.reader.read_threads=2 ++workload.dataset.record_length=4096 ++workload.dataset.record_length_stdev=0 | |
- name: test_subset | |
run: | | |
source ${VENV}/bin/activate | |
mpirun -np 2 pytest -k test_subset -v |