Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add template to use and compare prior records from file #62

Merged
merged 33 commits into from
Sep 26, 2024
Merged
Show file tree
Hide file tree
Changes from 27 commits
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
e18c9c7
Update README.md
jteijema Apr 23, 2024
d271668
Merge branch 'asreview:main' into main
jteijema Jun 27, 2024
9ad78ad
Update MANIFEST.in
jteijema Jul 16, 2024
da829f7
add priors script
jteijema Sep 12, 2024
90cf9a9
Update priors templte
jteijema Sep 12, 2024
f13b7ee
Update the template
jteijema Sep 16, 2024
e96483f
reorder output data
jteijema Sep 16, 2024
604aacf
readme
jteijema Sep 17, 2024
3292ce5
update prior template
jteijema Sep 17, 2024
381adbd
remove init seed from priorIDX runs
jteijema Sep 17, 2024
3257452
remove n_runs
jteijema Sep 17, 2024
b953998
hide random line in prior
jteijema Sep 17, 2024
9acf241
update workflow
jteijema Sep 17, 2024
0d2b6aa
Update README.md with test statusbadge
jteijema Sep 17, 2024
3f43882
Merge branch 'main' into prior
jteijema Sep 17, 2024
9a1b649
Merge remote-tracking branch 'upstream/main'
jteijema Sep 17, 2024
5c2a603
Merge branch 'main' into prior
jteijema Sep 17, 2024
eb7b7e9
ruff formatting
jteijema Sep 17, 2024
43c7124
Add example for prior
jteijema Sep 17, 2024
0ba515f
Change to shell files in example
jteijema Sep 17, 2024
695c9ef
Update README.md
jteijema Sep 18, 2024
a9fec5a
Update README.md
jteijema Sep 18, 2024
0649ff4
Update README.md
jteijema Sep 18, 2024
55d8560
add label detection
jteijema Sep 18, 2024
a39c570
ruff
jteijema Sep 18, 2024
f6a6cb1
add_index_to_datasets
jteijema Sep 18, 2024
0ce9eb1
Update pyproject.toml
jteijema Sep 19, 2024
9266e0b
remove temporary badge
jteijema Sep 26, 2024
4b7ea85
Merge branch 'prior' of https://github.com/jteijema/asreview-makita i…
jteijema Sep 26, 2024
958f3b6
remove tf-keras for tests
jteijema Sep 26, 2024
45663a9
revert examples changes
jteijema Sep 26, 2024
89c72db
Merge branch 'main' into prior
J535D165 Sep 26, 2024
9a22067
update examples with prior template
jteijema Sep 26, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion .github/workflows/ci-workflow.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,13 @@ jobs:
run: |
ruff check .
- name: Create directories using Python
run: python -c "import os; [os.makedirs(path, exist_ok=True) for path in ['./tmp/basic/data-test', './tmp/arfi/data', './tmp/multimodel/data', './tmp/scripts', './tmp/synergy/data']]"
run: python -c "import os; [os.makedirs(path, exist_ok=True) for path in ['./tmp/basic/data-test', './tmp/arfi/data', './tmp/prior/data', './tmp/multimodel/data', './tmp/scripts', './tmp/synergy/data']]"
- name: set up environment
run: |
cp .github/workflows/test_data/labels.csv ./tmp/basic/data-test/labels.csv
cp .github/workflows/test_data/labels.csv ./tmp/arfi/data/labels.csv
cp .github/workflows/test_data/labels.csv ./tmp/prior/data/labels.csv
cp .github/workflows/test_data/labels.csv ./tmp/prior/data/prior_labels.csv
cp .github/workflows/test_data/labels.csv ./tmp/multimodel/data/labels.csv
- name: Render makita templates
run: |
Expand All @@ -42,6 +44,9 @@ jobs:
cd ../arfi
asreview makita template arfi | tee output.txt
grep -q "ERROR" output.txt && exit 1 || true
cd ../prior
asreview makita template prior | tee output.txt
grep -q "ERROR" output.txt && exit 1 || true
cd ../multimodel
asreview makita template multimodel | tee output.txt
grep -q "ERROR" output.txt && exit 1 || true
Expand Down
46 changes: 45 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# ASReview Makita

[![PyPI version](https://badge.fury.io/py/asreview-makita.svg)](https://badge.fury.io/py/asreview-makita) [![Downloads](https://pepy.tech/badge/asreview-makita)](https://pepy.tech/project/asreview-makita) ![PyPI - License](https://img.shields.io/pypi/l/asreview-makita) [![DOI](https://zenodo.org/badge/530642619.svg)](https://zenodo.org/badge/latestdoi/530642619)
[![PyPI version](https://badge.fury.io/py/asreview-makita.svg)](https://badge.fury.io/py/asreview-makita) [![Downloads](https://pepy.tech/badge/asreview-makita)](https://pepy.tech/project/asreview-makita) ![PyPI - License](https://img.shields.io/pypi/l/asreview-makita) [![DOI](https://zenodo.org/badge/530642619.svg)](https://zenodo.org/badge/latestdoi/530642619)[![test-suite](https://github.com/jteijema/asreview-makita/actions/workflows/ci-workflow.yml/badge.svg?branch=main)](https://github.com/jteijema/asreview-makita/actions/workflows/ci-workflow.yml)
jteijema marked this conversation as resolved.
Show resolved Hide resolved

[ASReviews](https://github.com/asreview/asreview)' Makita (**MAK**e **IT** **A**utomatic) is a workflow generator for simulation studies using the command line interface of [ASReview
LAB](https://asreview.readthedocs.io/en/latest/simulation_cli.html). Makita can be used to effortlessly generate the framework and code for your simulation study.
Expand Down Expand Up @@ -193,6 +193,8 @@ optional arguments:
--impossible_models IMPOSSIBLE_MODELS Model combinations to exclude Default: ['nb,doc2vec', 'nb,sbert']
```

#### Example usage

If you want to specify certain combinations of classifiers and feature
extractors that should and should not be used, you can use the `--classifiers`,
`--feature_extractors`, `--query_strategies`, `--balance_strategies` and `--impossible_models` option. For instance, if you
Expand All @@ -203,6 +205,48 @@ want to exclude the combinations of `nb` with `doc2vec` and `logistic` with
asreview makita template multimodel --classifiers logistic nb --feature_extractors tfidf doc2vec --query_strategies max max_random max_uncertainty cluster --impossible_models nb,doc2vec logistic,tfidf
```

### Prior template

command: `prior`

The prior template evaluates how large amounts of prior knowledge might affect simulation performance. It processes two types of data in the data folder: labeled dataset(s) to be simulated and labeled dataset(s) to be used as prior knowledge. The filename(s) of the dataset(s) containing the prior knowledge should use the naming prefix `prior_[dataset_name]`.

The template runs two simulations: the first simulation uses all records from the `prior_` dataset(s) as prior knowledge, and the second uses a 1+1 randomly chosen set of prior knowledge from the non-prior knowledge dataset. Both runs simulate performance on the combined non-prior dataset(s).

Running this template creates a `generated_data` folder. This folder contains two datasets; `dataset_with_priors.csv` and `dataset_without_priors.csv`. The simulations specified in the generated jobs file will use these datasets for their simulations.

optional arguments:

```console
-h, --help show this help message and exit
--job_file JOB_FILE, -f JOB_FILE The name of the file with jobs. Default jobs.bat for Windows, otherwise jobs.sh.
-s DATA_FOLDER Dataset folder
-o OUTPUT_FOLDER Output folder
--init_seed INIT_SEED Seed of the priors. Seed is set to 535 by default.
--model_seed MODEL_SEED Seed of the models. Seed is set to 165 by default.
--template TEMPLATE Overwrite template with template file path.
--platform PLATFORM Platform to run jobs: Windows, Darwin, Linux. Default: the system of rendering templates.
--n_runs N_RUNS Number of runs. Default: 1.
--skip_wordclouds Disables the generation of wordclouds.
--overwrite Automatically accepts all overwrite requests.
--classifier CLASSIFIER Classifier to use. Default: nb.
--feature_extractor FEATURE_EXTRACTOR Feature_extractor to use. Default: tfidf.
--query_strategy QUERY_STRATEGY Query strategy to use. Default: max.
--balance_strategy BALANCE_STRATEGY Balance strategy to use. Default: double.
--instances_per_query INSTANCES_PER_QUERY Number of instances per query. Default: 1.
--stop_if STOP_IF The number of label actions to simulate. Default 'min' will stop simulating when all relevant records are found.
```

#### Example usage

Put at least 2 datasets in the data folder. One starting with the `prior_` prefix, and one without this prefix.

> note: `priors_` will also work.

```console
asreview makita template prior --classifier logistic --feature_extractor tfidf
```

## Advanced usage

### Create and use custom templates
Expand Down
30 changes: 15 additions & 15 deletions asreviewcontrib/makita/entrypoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,78 +69,78 @@ def execute(self, argv): # noqa: C901
"--instances_per_query",
type=int,
default=ASREVIEW_CONFIG.DEFAULT_N_INSTANCES,
help="Number of instances per query. ",
help="Number of instances per query.",
)
parser_template.add_argument(
"--stop_if",
type=str,
default="min",
help="The number of label actions to simulate. ",
help="The number of label actions to simulate.",
)
parser_template.add_argument(
"--n_runs",
type=int,
help="Number of runs. Only for templates 'basic' and 'multimodel'. ",
help="Number of runs.",
)
parser_template.add_argument(
"--n_priors",
type=int,
help="Number of priors. Only for template 'arfi'.",
help="Number of priors.",
)
parser_template.add_argument(
"--skip_wordclouds",
action="store_true",
help="Disables the generation of wordclouds. ",
help="Disables the generation of wordclouds.",
)
parser_template.add_argument(
"--overwrite",
action="store_true",
help="Overwrite existing files in the output folder. ",
help="Overwrite existing files in the output folder.",
)
parser_template.add_argument(
"--classifier",
type=str,
help="Classifier to use. Only for template 'basic' and 'arfi'. ",
help="Classifier to use.",
)
parser_template.add_argument(
"--feature_extractor",
type=str,
help="Feature_extractor to use. Only for template 'basic' and 'arfi'. ",
help="Feature_extractor to use.",
)
parser_template.add_argument(
"--query_strategy",
type=str,
help="Query strategy to use. Only for template 'basic' and 'arfi'. ",
help="Query strategy to use.",
)
parser_template.add_argument(
"--balance_strategy",
type=str,
help="Balance strategy to use. Only for template 'basic' and 'arfi'. ",
help="Balance strategy to use.",
)
parser_template.add_argument(
"--classifiers",
nargs="+",
help="Classifiers to use. Only for template 'multimodel'. ",
help="Classifiers to use.",
)
parser_template.add_argument(
"--feature_extractors",
nargs="+",
help="Feature extractors to use. Only for template 'multimodel'. ",
help="Feature extractors to use.",
)
parser_template.add_argument(
"--query_strategies",
nargs="+",
help="Query strategies to use. Only for template 'multimodel'. ",
help="Query strategies to use.",
)
parser_template.add_argument(
"--balance_strategies",
nargs="+",
help="Balancing strategies to use. Only for template 'multimodel'. ",
help="Balancing strategies to use.",
)
parser_template.add_argument(
"--impossible_models",
nargs="+",
help="Model combinations to exclude. Only for template 'multimodel'.",
help="Model combinations to exclude.",
)

parser_template.set_defaults(func=self._template_cli)
Expand Down
184 changes: 184 additions & 0 deletions asreviewcontrib/makita/template_prior.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
import warnings
from pathlib import Path

import pandas as pd
from asreview import config as ASREVIEW_CONFIG
from asreview.data import load_data

from asreviewcontrib.makita.template_base import TemplateBase

# Suppress FutureWarning messages
warnings.simplefilter(action="ignore", category=FutureWarning)


class TemplatePrior(TemplateBase):
template_file = "template_prior.txt.template"

def __init__(
self,
classifier,
feature_extractor,
query_strategy,
n_runs,
**kwargs,
):
self.classifier = classifier
self.feature_extractor = feature_extractor
self.query_strategy = query_strategy
self.n_runs = n_runs
self.prior_makita_datasets = []
super().__init__(**kwargs)

self._prior_dataset_count = self._non_prior_dataset_count = 0

def get_dataset_specific_params(self, index, fp_dataset):
"""Prepare dataset-specific parameters. These parameters are provided to the
template once for each dataset."""

# Load the dataset using load_data
asreview_data = load_data(fp_dataset)

# Create a DataFrame with the desired columns: label, abstract, and title
dataset = pd.DataFrame(
{
"title": asreview_data.title,
"abstract": asreview_data.abstract,
"label": asreview_data.labels.astype(int),
}
)

# Add the 'makita_priors' column
if fp_dataset.name.startswith("prior_") or fp_dataset.name.startswith(
"priors_"
):
dataset["makita_priors"] = 1
self._prior_dataset_count += 1
else:
dataset["makita_priors"] = 0
self._non_prior_dataset_count += 1

if -1 in dataset.label.values:
index = dataset.label[dataset.label.values == -1].index[0]
raise ValueError(
f"Dataset {fp_dataset} contains unlabeled record at row {index}.\
\nTitle: '{dataset.title[index]}'"
)

# Add the dataset to the list
self.prior_makita_datasets.append(dataset)

return {}

def get_template_specific_params(self, params):
"""Prepare template-specific parameters. These parameters are provided to the
template only once."""

classifier = (
self.classifier
if self.classifier is not None
else ASREVIEW_CONFIG.DEFAULT_MODEL
)
feature_extractor = (
self.feature_extractor
if self.feature_extractor is not None
else ASREVIEW_CONFIG.DEFAULT_FEATURE_EXTRACTION
)
query_strategy = (
self.query_strategy
if self.query_strategy is not None
else ASREVIEW_CONFIG.DEFAULT_QUERY_STRATEGY
)
balance_strategy = (
self.balance_strategy
if self.balance_strategy is not None
else ASREVIEW_CONFIG.DEFAULT_BALANCE_STRATEGY
)
n_runs = self.n_runs if self.n_runs is not None else 1

# Check if at least one dataset with prior knowledge is present
if self._prior_dataset_count == 0:
raise ValueError(
"At least one dataset with prior knowledge (prefix 'prior_' or \
'priors_') is required."
)

# Check if at least one dataset without prior knowledge is present
if self._non_prior_dataset_count == 0:
raise ValueError(
"At least one dataset without prior knowledge is required."
)

# Print the number of datasets with and without prior knowledge
print(f"\nTotal datasets with prior knowledge: {self._prior_dataset_count}")
print(
f"Total datasets without prior knowledge: {self._non_prior_dataset_count}"
)

# Create a directory for generated data if it doesn't already exist
generated_folder = Path("generated_data")
generated_folder.mkdir(parents=True, exist_ok=True)

# Set file paths for datasets with and without prior knowledge
filepath_with_priors = generated_folder / "dataset_with_priors.csv"
filepath_without_priors = generated_folder / "dataset_without_priors.csv"

# Combine all datasets into one DataFrame and remove rows where label is -1
combined_dataset = pd.concat(self.prior_makita_datasets, ignore_index=True)
combined_dataset.drop(
combined_dataset[combined_dataset.label == -1].index, inplace=True
)

# Calculate the total number of rows with and without prior knowledge
total_rows_with_priors = combined_dataset[
combined_dataset["makita_priors"] == 1
].shape[0]
total_rows_without_priors = combined_dataset[
combined_dataset["makita_priors"] == 0
].shape[0]

# Print the number of rows with and without prior knowledge
print(f"Total rows of prior knowledge: {total_rows_with_priors}")
print(f"Total rows of non-prior knowledge: {total_rows_without_priors}")

# Save the combined dataset to the appropriate file paths
combined_dataset.to_csv(filepath_with_priors,
index=True,
index_label='record_id')
combined_dataset[combined_dataset["makita_priors"] != 1].to_csv(
filepath_without_priors,
index=True,
index_label='record_id'
)

# Create a string of indices for rows with prior knowledge
prior_idx_list = combined_dataset[
combined_dataset["makita_priors"] == 1
].index.tolist()
if len(prior_idx_list) != total_rows_with_priors:
raise ValueError(
"prior_idx list is not equal in length to rows of prior \
knowledge"
)
prior_idx = " ".join(map(str, prior_idx_list))

return {
"classifier": classifier,
"feature_extractor": feature_extractor,
"query_strategy": query_strategy,
"balance_strategy": balance_strategy,
"n_runs": n_runs,
"datasets": params,
"skip_wordclouds": self.skip_wordclouds,
"instances_per_query": self.instances_per_query,
"stop_if": self.stop_if,
"output_folder": self.output_folder,
"scripts_folder": self.scripts_folder,
"version": self.__version__,
"model_seed": self.model_seed,
"init_seed": self.init_seed,
"filepath_with_priors": filepath_with_priors,
"filepath_with_priors_stem": filepath_with_priors.stem,
"filepath_without_priors": filepath_without_priors,
"filepath_without_priors_stem": filepath_without_priors.stem,
"prior_idx": prior_idx,
}
Loading