-
Notifications
You must be signed in to change notification settings - Fork 3
/
shortk.c
251 lines (228 loc) · 8.34 KB
/
shortk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include "mgpriv.h"
#include "ksort.h"
#include "kavl.h"
#include "algo.h"
#include "khashl.h"
typedef struct sp_node_s {
uint64_t di; // dist<<32 | unique_id
uint32_t v;
int32_t pre;
uint32_t hash;
int32_t is_0;
KAVL_HEAD(struct sp_node_s) head;
} sp_node_t, *sp_node_p;
#define sp_node_cmp(a, b) (((a)->di > (b)->di) - ((a)->di < (b)->di))
KAVL_INIT(sp, sp_node_t, head, sp_node_cmp)
#define sp_node_lt(a, b) ((a)->di < (b)->di)
KSORT_INIT(sp, sp_node_p, sp_node_lt)
typedef struct {
int32_t k;
int32_t qs, qe;
sp_node_t *p[MG_MAX_SHORT_K]; // this forms a max-heap
} sp_topk_t;
KHASHL_MAP_INIT(KH_LOCAL, kh_sp_t, sp, uint32_t, sp_topk_t, kh_hash_uint32, kh_eq_generic)
KHASHL_MAP_INIT(KH_LOCAL, kh_sp2_t, sp2, uint32_t, uint64_t, kh_hash_uint32, kh_eq_generic)
#define MG_SHORT_K_EXT 1000
static inline sp_node_t *gen_sp_node(void *km, const gfa_t *g, uint32_t v, int32_t d, int32_t id)
{
sp_node_t *p;
KMALLOC(km, p, 1);
p->v = v, p->di = (uint64_t)d<<32 | id, p->pre = -1, p->is_0 = 1;
return p;
}
mg_pathv_t *mg_shortest_k(void *km0, const gfa_t *g, uint32_t src, int32_t n_dst, mg_path_dst_t *dst, int32_t max_dist, int32_t max_k, int32_t *n_pathv)
{
sp_node_t *p, *root = 0, **out;
sp_topk_t *q;
kh_sp_t *h;
kh_sp2_t *h2;
void *km;
khint_t k;
int absent;
int32_t i, j, n_done, n_found;
uint32_t id, n_out, m_out;
int8_t *dst_done;
mg_pathv_t *ret = 0;
uint64_t *dst_group, *seeds = 0;
void *h_seeds = 0;
mg128_v mini = {0,0,0};
if (n_pathv) *n_pathv = 0;
if (n_dst <= 0) return 0;
for (i = 0; i < n_dst; ++i) { // initialize
mg_path_dst_t *t = &dst[i];
if (t->inner)
t->dist = 0, t->n_path = 1, t->path_end = -1;
else
t->dist = -1, t->n_path = 0, t->path_end = -1;
}
if (max_k > MG_MAX_SHORT_K) max_k = MG_MAX_SHORT_K;
km = (mg_dbg_flag&MG_DBG_NO_KALLOC) && (mg_dbg_flag&MG_DBG_SHORTK)? 0 : km_init2(km0, 0x4000);
KCALLOC(km, dst_done, n_dst);
KMALLOC(km, dst_group, n_dst);
for (i = 0; i < n_dst; ++i) // multiple dst[] may have the same dst[].v. We need to group them first.
dst_group[i] = (uint64_t)dst[i].v<<32 | i;
radix_sort_gfa64(dst_group, dst_group + n_dst);
h2 = sp2_init2(km); // this hash table keeps all destinations
sp2_resize(h2, n_dst * 2);
for (i = 1, j = 0; i <= n_dst; ++i) {
if (i == n_dst || dst_group[i]>>32 != dst_group[j]>>32) {
k = sp2_put(h2, dst_group[j]>>32, &absent);
kh_val(h2, k) = (uint64_t)j << 32 | (i - j);
assert(absent);
j = i;
}
}
h = sp_init2(km); // this hash table keeps visited vertices
sp_resize(h, 16);
m_out = 16, n_out = 0;
KMALLOC(km, out, m_out);
id = 0;
p = gen_sp_node(km, g, src, 0, id++);
p->hash = kh_hash_uint32(src);
kavl_insert(sp, &root, p, 0);
k = sp_put(h, src, &absent);
q = &kh_val(h, k);
q->k = 1, q->p[0] = p, q->qs = q->qe = -1;
n_done = 0;
while (kavl_size(head, root) > 0) {
int32_t i, nv;
gfa_arc_t *av;
sp_node_t *r;
r = kavl_erase_first(sp, &root); // take out the closest vertex in the heap (as a binary tree)
//fprintf(stderr, "XX\t%d\t%d\t%d\t%c%s[%d]\t%d\n", n_out, kavl_size(head, root), n_finished, "><"[(r->v&1)^1], g->seg[r->v>>1].name, r->v, (int32_t)(r->di>>32));
if (n_out == m_out) KEXPAND(km, out, m_out);
r->di = r->di>>32<<32 | n_out; // lower 32 bits now for position in the out[] array
out[n_out++] = r;
k = sp2_get(h2, r->v);
if (k != kh_end(h2)) { // we have reached one dst vertex
int32_t j, dist = r->di>>32, off = kh_val(h2, k) >> 32, cnt = (int32_t)kh_val(h2, k);
for (j = 0; j < cnt; ++j) {
mg_path_dst_t *t = &dst[(int32_t)dst_group[off + j]];
int32_t done = 0;
if (t->inner) {
done = 1;
} else {
int32_t copy = 0;
//if (mg_dbg_flag & MG_DBG_GC1) fprintf(stderr, " src=%c%s[%d],qlen=%d\tdst=%c%s[%d]\ttarget_distx=%d,target_hash=%x\tdistx=%d,hash=%x\n", "><"[src&1], g->seg[src>>1].name, src, ql, "><"[t->v&1], g->seg[t->v>>1].name, t->v, t->target_dist - g->seg[src>>1].len, t->target_hash, dist - g->seg[src>>1].len, r->hash);
if (t->n_path == 0) { // keep the shortest path
copy = 1;
} else if (t->target_dist >= 0) { // we have a target distance; choose the closest
if (dist == t->target_dist && t->check_hash && r->hash == t->target_hash) { // we found the target path
copy = 1, done = 1;
} else {
int32_t d0 = t->dist, d1 = dist;
d0 = d0 > t->target_dist? d0 - t->target_dist : t->target_dist - d0;
d1 = d1 > t->target_dist? d1 - t->target_dist : t->target_dist - d1;
if (d1 < d0) copy = 1;
}
}
if (copy) {
t->path_end = n_out - 1, t->dist = dist, t->hash = r->hash, t->is_0 = r->is_0;
if (t->target_dist >= 0) {
if (dist == t->target_dist && t->check_hash && r->hash == t->target_hash) done = 1;
else if (dist > t->target_dist + MG_SHORT_K_EXT) done = 1;
}
}
++t->n_path;
if (t->n_path >= max_k) done = 1;
}
if (dst_done[off + j] == 0 && done)
dst_done[off + j] = 1, ++n_done;
}
if (n_done == n_dst) break;
}
nv = gfa_arc_n(g, r->v);
av = gfa_arc_a(g, r->v);
for (i = 0; i < nv; ++i) { // visit all neighbors
gfa_arc_t *ai = &av[i];
int32_t d = (r->di>>32) + (uint32_t)ai->v_lv;
if (d > max_dist) continue; // don't probe vertices too far away
k = sp_put(h, ai->w, &absent);
q = &kh_val(h, k);
if (absent) { // a new vertex visited
q->k = 0, q->qs = q->qe = -1;
//if (ql && qs) fprintf(stderr, "ql=%d,src=%d\tv=%c%s[%d]\n", ql, src, "><"[ai->w&1], g->seg[ai->w>>1].name, ai->w);
}
if (q->k < max_k) { // enough room: add to the heap
p = gen_sp_node(km, g, ai->w, d, id++);
p->pre = n_out - 1;
p->hash = r->hash + kh_hash_uint32(ai->w);
p->is_0 = r->is_0;
if (ai->rank > 0) p->is_0 = 0;
kavl_insert(sp, &root, p, 0);
q->p[q->k++] = p;
ks_heapup_sp(q->k, q->p);
} else if (q->p[0]->di>>32 > d) { // shorter than the longest path so far: replace the longest
p = kavl_erase(sp, &root, q->p[0], 0);
if (p) {
p->di = (uint64_t)d<<32 | (id++);
p->pre = n_out - 1;
p->hash = r->hash + kh_hash_uint32(ai->w);
p->is_0 = r->is_0;
if (ai->rank > 0) p->is_0 = 0;
kavl_insert(sp, &root, p, 0);
ks_heapdown_sp(0, q->k, q->p);
} else {
fprintf(stderr, "Warning: logical bug in gfa_shortest_k(): q->k=%d,q->p[0]->{d,i}={%d,%d},d=%d,src=%u,max_dist=%d,n_dst=%d\n", q->k, (int32_t)(q->p[0]->di>>32), (int32_t)q->p[0]->di, d, src, max_dist, n_dst);
km_destroy(km);
return 0;
}
} // else: the path is longer than all the existing paths ended at ai->w
}
}
kfree(km, dst_group);
kfree(km, dst_done);
sp_destroy(h);
mg_idx_hfree(h_seeds);
kfree(km, seeds);
kfree(km, mini.a);
// NB: AVL nodes are not deallocated. When km==0, they are memory leaks.
for (i = 0, n_found = 0; i < n_dst; ++i)
if (dst[i].n_path > 0) ++n_found;
if (n_found > 0 && n_pathv) { // then generate the backtrack array
int32_t n, *trans;
KCALLOC(km, trans, n_out); // used to squeeze unused elements in out[]
for (i = 0; i < n_dst; ++i) { // mark dst vertices with a target distance
mg_path_dst_t *t = &dst[i];
if (t->n_path > 0 && t->target_dist >= 0 && t->path_end >= 0)
trans[(int32_t)out[t->path_end]->di] = 1;
}
for (i = 0; i < n_out; ++i) { // mark dst vertices without a target distance
k = sp2_get(h2, out[i]->v);
if (k != kh_end(h2)) { // TODO: check if this is correct!
int32_t off = kh_val(h2, k)>>32, cnt = (int32_t)kh_val(h2, k);
for (j = off; j < off + cnt; ++j)
if (dst[j].target_dist < 0)
trans[i] = 1;
}
}
for (i = n_out - 1; i >= 0; --i) // mark all predecessors
if (trans[i] && out[i]->pre >= 0)
trans[out[i]->pre] = 1;
for (i = n = 0; i < n_out; ++i) // generate coordinate translations
if (trans[i]) trans[i] = n++;
else trans[i] = -1;
*n_pathv = n;
KMALLOC(km0, ret, n);
for (i = 0; i < n_out; ++i) { // generate the backtrack array
mg_pathv_t *p;
if (trans[i] < 0) continue;
p = &ret[trans[i]];
p->v = out[i]->v, p->d = out[i]->di >> 32;
p->pre = out[i]->pre < 0? out[i]->pre : trans[out[i]->pre];
}
for (i = 0; i < n_dst; ++i) // translate "path_end"
if (dst[i].path_end >= 0)
dst[i].path_end = trans[dst[i].path_end];
}
km_destroy(km);
return ret;
}
void mg_sub_print_path(FILE *fp, const gfa_t *g, int32_t n, mg_pathv_t *path)
{
int32_t i;
for (i = 0; i < n; ++i) {
mg_pathv_t *p = &path[i];
fprintf(fp, "[%d]\t%d\t%s\t%d\t%d\n", i, p->v, g->seg[p->v>>1].name, p->d, p->pre);
}
}