-
Notifications
You must be signed in to change notification settings - Fork 670
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test(lidar_centerpoint): add test (#7029)
* test(lidar_centerpoint): add test Signed-off-by: kminoda <[email protected]> * update test Signed-off-by: kminoda <[email protected]> * update license Signed-off-by: kminoda <[email protected]> * style(pre-commit): autofix * fix namespace Signed-off-by: kminoda <[email protected]> * style(pre-commit): autofix --------- Signed-off-by: kminoda <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
d836237
commit 5105e83
Showing
4 changed files
with
368 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
92 changes: 92 additions & 0 deletions
92
perception/lidar_centerpoint/test/test_detection_class_remapper.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
// Copyright 2024 TIER IV, Inc. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include <lidar_centerpoint/detection_class_remapper.hpp> | ||
|
||
#include <gtest/gtest.h> | ||
|
||
TEST(DetectionClassRemapperTest, MapClasses) | ||
{ | ||
centerpoint::DetectionClassRemapper remapper; | ||
|
||
// Set up the parameters for the remapper | ||
// Labels: CAR, TRUCK, TRAILER | ||
std::vector<int64_t> allow_remapping_by_area_matrix = { | ||
0, 0, 0, // CAR cannot be remapped | ||
0, 0, 1, // TRUCK can be remapped to TRAILER | ||
0, 1, 0 // TRAILER can be remapped to TRUCK | ||
}; | ||
std::vector<double> min_area_matrix = {0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0}; | ||
std::vector<double> max_area_matrix = {0.0, 0.0, 0.0, 0.0, 0.0, 999.0, 0.0, 10.0, 0.0}; | ||
|
||
remapper.setParameters(allow_remapping_by_area_matrix, min_area_matrix, max_area_matrix); | ||
|
||
// Create a DetectedObjects message with some objects | ||
autoware_auto_perception_msgs::msg::DetectedObjects msg; | ||
|
||
// CAR with area 4.0, which is out of the range for remapping | ||
autoware_auto_perception_msgs::msg::DetectedObject obj1; | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj1_classification; | ||
obj1.shape.dimensions.x = 2.0; | ||
obj1.shape.dimensions.y = 2.0; | ||
obj1_classification.label = 0; | ||
obj1_classification.probability = 1.0; | ||
obj1.classification = {obj1_classification}; | ||
msg.objects.push_back(obj1); | ||
|
||
// TRUCK with area 16.0, which is in the range for remapping to TRAILER | ||
autoware_auto_perception_msgs::msg::DetectedObject obj2; | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj2_classification; | ||
obj2.shape.dimensions.x = 8.0; | ||
obj2.shape.dimensions.y = 2.0; | ||
obj2_classification.label = 1; | ||
obj2_classification.probability = 1.0; | ||
obj2.classification = {obj2_classification}; | ||
msg.objects.push_back(obj2); | ||
|
||
// TRAILER with area 9.0, which is in the range for remapping to TRUCK | ||
autoware_auto_perception_msgs::msg::DetectedObject obj3; | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj3_classification; | ||
obj3.shape.dimensions.x = 3.0; | ||
obj3.shape.dimensions.y = 3.0; | ||
obj3_classification.label = 2; | ||
obj3_classification.probability = 1.0; | ||
obj3.classification = {obj3_classification}; | ||
msg.objects.push_back(obj3); | ||
|
||
// TRAILER with area 12.0, which is out of the range for remapping | ||
autoware_auto_perception_msgs::msg::DetectedObject obj4; | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj4_classification; | ||
obj4.shape.dimensions.x = 4.0; | ||
obj4.shape.dimensions.y = 3.0; | ||
obj4_classification.label = 2; | ||
obj4_classification.probability = 1.0; | ||
obj4.classification = {obj4_classification}; | ||
msg.objects.push_back(obj4); | ||
|
||
// Call the mapClasses function | ||
remapper.mapClasses(msg); | ||
|
||
// Check the remapped labels | ||
EXPECT_EQ(msg.objects[0].classification[0].label, 0); | ||
EXPECT_EQ(msg.objects[1].classification[0].label, 2); | ||
EXPECT_EQ(msg.objects[2].classification[0].label, 1); | ||
EXPECT_EQ(msg.objects[3].classification[0].label, 2); | ||
} | ||
|
||
int main(int argc, char ** argv) | ||
{ | ||
testing::InitGoogleTest(&argc, argv); | ||
return RUN_ALL_TESTS(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
// Copyright 2024 TIER IV, Inc. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "lidar_centerpoint/postprocess/non_maximum_suppression.hpp" | ||
|
||
#include <gtest/gtest.h> | ||
|
||
TEST(NonMaximumSuppressionTest, Apply) | ||
{ | ||
centerpoint::NonMaximumSuppression nms; | ||
centerpoint::NMSParams params; | ||
params.search_distance_2d_ = 1.0; | ||
params.iou_threshold_ = 0.2; | ||
params.nms_type_ = centerpoint::NMS_TYPE::IoU_BEV; | ||
params.target_class_names_ = {"CAR"}; | ||
nms.setParameters(params); | ||
|
||
std::vector<centerpoint::DetectedObject> input_objects(4); | ||
|
||
// Object 1 | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj1_classification; | ||
obj1_classification.label = 0; // Assuming "car" has label 0 | ||
obj1_classification.probability = 1.0; | ||
input_objects[0].classification = {obj1_classification}; // Assuming "car" has label 0 | ||
input_objects[0].kinematics.pose_with_covariance.pose.position.x = 0.0; | ||
input_objects[0].kinematics.pose_with_covariance.pose.position.y = 0.0; | ||
input_objects[0].kinematics.pose_with_covariance.pose.orientation.x = 0.0; | ||
input_objects[0].kinematics.pose_with_covariance.pose.orientation.y = 0.0; | ||
input_objects[0].kinematics.pose_with_covariance.pose.orientation.z = 0.0; | ||
input_objects[0].kinematics.pose_with_covariance.pose.orientation.w = 1.0; | ||
input_objects[0].shape.type = autoware_auto_perception_msgs::msg::Shape::BOUNDING_BOX; | ||
input_objects[0].shape.dimensions.x = 4.0; | ||
input_objects[0].shape.dimensions.y = 2.0; | ||
|
||
// Object 2 (overlaps with Object 1) | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj2_classification; | ||
obj2_classification.label = 0; // Assuming "car" has label 0 | ||
obj2_classification.probability = 1.0; | ||
input_objects[1].classification = {obj2_classification}; // Assuming "car" has label 0 | ||
input_objects[1].kinematics.pose_with_covariance.pose.position.x = 0.5; | ||
input_objects[1].kinematics.pose_with_covariance.pose.position.y = 0.5; | ||
input_objects[1].kinematics.pose_with_covariance.pose.orientation.x = 0.0; | ||
input_objects[1].kinematics.pose_with_covariance.pose.orientation.y = 0.0; | ||
input_objects[1].kinematics.pose_with_covariance.pose.orientation.z = 0.0; | ||
input_objects[1].kinematics.pose_with_covariance.pose.orientation.w = 1.0; | ||
input_objects[1].shape.type = autoware_auto_perception_msgs::msg::Shape::BOUNDING_BOX; | ||
input_objects[1].shape.dimensions.x = 4.0; | ||
input_objects[1].shape.dimensions.y = 2.0; | ||
|
||
// Object 3 | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj3_classification; | ||
obj3_classification.label = 0; // Assuming "car" has label 0 | ||
obj3_classification.probability = 1.0; | ||
input_objects[2].classification = {obj3_classification}; // Assuming "car" has label 0 | ||
input_objects[2].kinematics.pose_with_covariance.pose.position.x = 5.0; | ||
input_objects[2].kinematics.pose_with_covariance.pose.position.y = 5.0; | ||
input_objects[2].kinematics.pose_with_covariance.pose.orientation.x = 0.0; | ||
input_objects[2].kinematics.pose_with_covariance.pose.orientation.y = 0.0; | ||
input_objects[2].kinematics.pose_with_covariance.pose.orientation.z = 0.0; | ||
input_objects[2].kinematics.pose_with_covariance.pose.orientation.w = 1.0; | ||
input_objects[2].shape.type = autoware_auto_perception_msgs::msg::Shape::BOUNDING_BOX; | ||
input_objects[2].shape.dimensions.x = 4.0; | ||
input_objects[2].shape.dimensions.y = 2.0; | ||
|
||
// Object 4 (different class) | ||
autoware_auto_perception_msgs::msg::ObjectClassification obj4_classification; | ||
obj4_classification.label = 1; // Assuming "pedestrian" has label 1 | ||
obj4_classification.probability = 1.0; | ||
input_objects[3].classification = {obj4_classification}; // Assuming "pedestrian" has label 1 | ||
input_objects[3].kinematics.pose_with_covariance.pose.position.x = 0.0; | ||
input_objects[3].kinematics.pose_with_covariance.pose.position.y = 0.0; | ||
input_objects[3].kinematics.pose_with_covariance.pose.orientation.x = 0.0; | ||
input_objects[3].kinematics.pose_with_covariance.pose.orientation.y = 0.0; | ||
input_objects[3].kinematics.pose_with_covariance.pose.orientation.z = 0.0; | ||
input_objects[3].kinematics.pose_with_covariance.pose.orientation.w = 1.0; | ||
input_objects[3].shape.type = autoware_auto_perception_msgs::msg::Shape::BOUNDING_BOX; | ||
input_objects[3].shape.dimensions.x = 0.5; | ||
input_objects[3].shape.dimensions.y = 0.5; | ||
|
||
std::vector<centerpoint::DetectedObject> output_objects = nms.apply(input_objects); | ||
|
||
// Assert the expected number of output objects | ||
EXPECT_EQ(output_objects.size(), 3); | ||
|
||
// Assert that input_objects[2] is included in the output_objects | ||
bool is_input_object_2_included = false; | ||
for (const auto & output_object : output_objects) { | ||
if (output_object == input_objects[2]) { | ||
is_input_object_2_included = true; | ||
break; | ||
} | ||
} | ||
EXPECT_TRUE(is_input_object_2_included); | ||
|
||
// Assert that input_objects[3] is included in the output_objects | ||
bool is_input_object_3_included = false; | ||
for (const auto & output_object : output_objects) { | ||
if (output_object == input_objects[3]) { | ||
is_input_object_3_included = true; | ||
break; | ||
} | ||
} | ||
EXPECT_TRUE(is_input_object_3_included); | ||
} | ||
|
||
int main(int argc, char ** argv) | ||
{ | ||
testing::InitGoogleTest(&argc, argv); | ||
return RUN_ALL_TESTS(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
// Copyright 2024 TIER IV, Inc. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "lidar_centerpoint/ros_utils.hpp" | ||
|
||
#include <gtest/gtest.h> | ||
|
||
TEST(TestSuite, box3DToDetectedObject) | ||
{ | ||
std::vector<std::string> class_names = {"CAR", "TRUCK", "BUS", "TRAILER", | ||
"BICYCLE", "MOTORBIKE", "PEDESTRIAN"}; | ||
|
||
// Test case 1: Test with valid label, has_twist=true, has_variance=true | ||
{ | ||
centerpoint::Box3D box3d; | ||
box3d.score = 0.8f; | ||
box3d.label = 0; // CAR | ||
box3d.x = 1.0; | ||
box3d.y = 2.0; | ||
box3d.z = 3.0; | ||
box3d.yaw = 0.5; | ||
box3d.length = 4.0; | ||
box3d.width = 2.0; | ||
box3d.height = 1.5; | ||
box3d.vel_x = 1.0; | ||
box3d.vel_y = 0.5; | ||
box3d.x_variance = 0.1; | ||
box3d.y_variance = 0.2; | ||
box3d.z_variance = 0.3; | ||
box3d.yaw_variance = 0.4; | ||
box3d.vel_x_variance = 0.5; | ||
box3d.vel_y_variance = 0.6; | ||
|
||
autoware_auto_perception_msgs::msg::DetectedObject obj; | ||
centerpoint::box3DToDetectedObject(box3d, class_names, true, true, obj); | ||
|
||
EXPECT_FLOAT_EQ(obj.existence_probability, 0.8f); | ||
EXPECT_EQ( | ||
obj.classification[0].label, autoware_auto_perception_msgs::msg::ObjectClassification::CAR); | ||
EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.x, 1.0); | ||
EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.y, 2.0); | ||
EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.z, 3.0); | ||
EXPECT_FLOAT_EQ(obj.shape.dimensions.x, 4.0); | ||
EXPECT_FLOAT_EQ(obj.shape.dimensions.y, 2.0); | ||
EXPECT_FLOAT_EQ(obj.shape.dimensions.z, 1.5); | ||
EXPECT_TRUE(obj.kinematics.has_position_covariance); | ||
EXPECT_TRUE(obj.kinematics.has_twist); | ||
EXPECT_TRUE(obj.kinematics.has_twist_covariance); | ||
} | ||
|
||
// Test case 2: Test with invalid label, has_twist=false, has_variance=false | ||
{ | ||
centerpoint::Box3D box3d; | ||
box3d.score = 0.5f; | ||
box3d.label = 10; // Invalid | ||
|
||
autoware_auto_perception_msgs::msg::DetectedObject obj; | ||
centerpoint::box3DToDetectedObject(box3d, class_names, false, false, obj); | ||
|
||
EXPECT_FLOAT_EQ(obj.existence_probability, 0.5f); | ||
EXPECT_EQ( | ||
obj.classification[0].label, | ||
autoware_auto_perception_msgs::msg::ObjectClassification::UNKNOWN); | ||
EXPECT_FALSE(obj.kinematics.has_position_covariance); | ||
EXPECT_FALSE(obj.kinematics.has_twist); | ||
EXPECT_FALSE(obj.kinematics.has_twist_covariance); | ||
} | ||
} | ||
|
||
TEST(TestSuite, getSemanticType) | ||
{ | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("CAR"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::CAR); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("TRUCK"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::TRUCK); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("BUS"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::BUS); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("TRAILER"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::TRAILER); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("BICYCLE"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::BICYCLE); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("MOTORBIKE"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::MOTORCYCLE); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("PEDESTRIAN"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::PEDESTRIAN); | ||
EXPECT_EQ( | ||
centerpoint::getSemanticType("UNKNOWN"), | ||
autoware_auto_perception_msgs::msg::ObjectClassification::UNKNOWN); | ||
} | ||
|
||
TEST(TestSuite, convertPoseCovarianceMatrix) | ||
{ | ||
centerpoint::Box3D box3d; | ||
box3d.x_variance = 0.1; | ||
box3d.y_variance = 0.2; | ||
box3d.z_variance = 0.3; | ||
box3d.yaw_variance = 0.4; | ||
|
||
std::array<double, 36> pose_covariance = centerpoint::convertPoseCovarianceMatrix(box3d); | ||
|
||
EXPECT_FLOAT_EQ(pose_covariance[0], 0.1); | ||
EXPECT_FLOAT_EQ(pose_covariance[7], 0.2); | ||
EXPECT_FLOAT_EQ(pose_covariance[14], 0.3); | ||
EXPECT_FLOAT_EQ(pose_covariance[35], 0.4); | ||
} | ||
|
||
TEST(TestSuite, convertTwistCovarianceMatrix) | ||
{ | ||
centerpoint::Box3D box3d; | ||
box3d.vel_x_variance = 0.1; | ||
box3d.vel_y_variance = 0.2; | ||
|
||
std::array<double, 36> twist_covariance = centerpoint::convertTwistCovarianceMatrix(box3d); | ||
|
||
EXPECT_FLOAT_EQ(twist_covariance[0], 0.1); | ||
EXPECT_FLOAT_EQ(twist_covariance[7], 0.2); | ||
} | ||
|
||
int main(int argc, char ** argv) | ||
{ | ||
testing::InitGoogleTest(&argc, argv); | ||
return RUN_ALL_TESTS(); | ||
} |