Skip to content

Commit

Permalink
feat(perception_online_evaluator): publish metrics of each object cla…
Browse files Browse the repository at this point in the history
…ss (#6556)

Signed-off-by: kosuke55 <[email protected]>
  • Loading branch information
kosuke55 authored Mar 7, 2024
1 parent e1a3139 commit 7081a61
Show file tree
Hide file tree
Showing 6 changed files with 163 additions and 74 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "perception_online_evaluator/metrics/metric.hpp"
#include "perception_online_evaluator/parameters.hpp"
#include "perception_online_evaluator/stat.hpp"
#include "perception_online_evaluator/utils/objects_filtering.hpp"

#include <rclcpp/time.hpp>

Expand Down Expand Up @@ -118,9 +119,9 @@ class MetricsCalculator
void deleteOldObjects(const rclcpp::Time stamp);

// Calculate metrics
MetricStatMap calcLateralDeviationMetrics(const PredictedObjects & objects) const;
MetricStatMap calcYawDeviationMetrics(const PredictedObjects & objects) const;
MetricStatMap calcPredictedPathDeviationMetrics(const PredictedObjects & objects) const;
MetricStatMap calcLateralDeviationMetrics(const ClassObjectsMap & class_objects_map) const;
MetricStatMap calcYawDeviationMetrics(const ClassObjectsMap & class_objects_map) const;
MetricStatMap calcPredictedPathDeviationMetrics(const ClassObjectsMap & class_objects_map) const;
Stat<double> calcPredictedPathDeviationMetrics(
const PredictedObjects & objects, const double time_horizon) const;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@ using autoware_auto_perception_msgs::msg::ObjectClassification;
using autoware_auto_perception_msgs::msg::PredictedObject;
using autoware_auto_perception_msgs::msg::PredictedObjects;

using ClassObjectsMap = std::unordered_map<uint8_t, PredictedObjects>;

std::uint8_t getHighestProbLabel(const std::vector<ObjectClassification> & classification);

/**
Expand Down Expand Up @@ -105,6 +107,14 @@ void filterObjects(PredictedObjects & objects, Func filter)
filterObjects(objects, removed_objects, filter);
}

/**
* @brief Separates the provided objects based on their classification.
*
* @param objects The predicted objects to be separated.
* @return A map of objects separated by their classification.
*/
ClassObjectsMap separateObjectsByClass(const PredictedObjects & objects);

/**
* @brief Filters the provided objects based on their classification.
*
Expand Down
1 change: 1 addition & 0 deletions evaluator/perception_online_evaluator/package.xml
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
<depend>libgoogle-glog-dev</depend>
<depend>motion_utils</depend>
<depend>nav_msgs</depend>
<depend>object_recognition_utils</depend>
<depend>pluginlib</depend>
<depend>rclcpp</depend>
<depend>rclcpp_components</depend>
Expand Down
101 changes: 54 additions & 47 deletions evaluator/perception_online_evaluator/src/metrics_calculator.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,15 @@
#include "perception_online_evaluator/metrics_calculator.hpp"

#include "motion_utils/trajectory/trajectory.hpp"
#include "perception_online_evaluator/utils/objects_filtering.hpp"
#include "object_recognition_utils/object_recognition_utils.hpp"
#include "tier4_autoware_utils/geometry/geometry.hpp"

#include <tier4_autoware_utils/ros/uuid_helper.hpp>

namespace perception_diagnostics
{
using object_recognition_utils::convertLabelToString;

std::optional<MetricStatMap> MetricsCalculator::calculate(const Metric & metric) const
{
if (object_map_.empty()) {
Expand All @@ -35,14 +37,14 @@ std::optional<MetricStatMap> MetricsCalculator::calculate(const Metric & metric)
return {};
}
const auto target_objects = getObjectsByStamp(target_stamp);

const ClassObjectsMap class_objects_map = separateObjectsByClass(target_objects);
switch (metric) {
case Metric::lateral_deviation:
return calcLateralDeviationMetrics(target_objects);
return calcLateralDeviationMetrics(class_objects_map);
case Metric::yaw_deviation:
return calcYawDeviationMetrics(target_objects);
return calcYawDeviationMetrics(class_objects_map);
case Metric::predicted_path_deviation:
return calcPredictedPathDeviationMetrics(target_objects);
return calcPredictedPathDeviationMetrics(class_objects_map);
default:
return {};
}
Expand Down Expand Up @@ -155,65 +157,70 @@ PredictedObjects MetricsCalculator::getObjectsByStamp(const rclcpp::Time stamp)
return objects;
}

MetricStatMap MetricsCalculator::calcLateralDeviationMetrics(const PredictedObjects & objects) const
MetricStatMap MetricsCalculator::calcLateralDeviationMetrics(
const ClassObjectsMap & class_objects_map) const
{
Stat<double> stat{};
const auto stamp = rclcpp::Time(objects.header.stamp);

for (const auto & object : objects.objects) {
const auto uuid = tier4_autoware_utils::toHexString(object.object_id);
if (!hasPassedTime(uuid, stamp)) {
continue;
}
const auto object_pose = object.kinematics.initial_pose_with_covariance.pose;
const auto history_path = history_path_map_.at(uuid).second;
if (history_path.empty()) {
continue;
MetricStatMap metric_stat_map{};
for (const auto & [label, objects] : class_objects_map) {
Stat<double> stat{};
const auto stamp = rclcpp::Time(objects.header.stamp);
for (const auto & object : objects.objects) {
const auto uuid = tier4_autoware_utils::toHexString(object.object_id);
if (!hasPassedTime(uuid, stamp)) {
continue;
}
const auto object_pose = object.kinematics.initial_pose_with_covariance.pose;
const auto history_path = history_path_map_.at(uuid).second;
if (history_path.empty()) {
continue;
}
stat.add(metrics::calcLateralDeviation(history_path, object_pose));
}
stat.add(metrics::calcLateralDeviation(history_path, object_pose));
metric_stat_map["lateral_deviation_" + convertLabelToString(label)] = stat;
}

MetricStatMap metric_stat_map;
metric_stat_map["lateral_deviation"] = stat;
return metric_stat_map;
}

MetricStatMap MetricsCalculator::calcYawDeviationMetrics(const PredictedObjects & objects) const
MetricStatMap MetricsCalculator::calcYawDeviationMetrics(
const ClassObjectsMap & class_objects_map) const
{
Stat<double> stat{};
const auto stamp = rclcpp::Time(objects.header.stamp);
for (const auto & object : objects.objects) {
const auto uuid = tier4_autoware_utils::toHexString(object.object_id);
if (!hasPassedTime(uuid, stamp)) {
continue;
}
const auto object_pose = object.kinematics.initial_pose_with_covariance.pose;
const auto history_path = history_path_map_.at(uuid).second;
if (history_path.empty()) {
continue;
MetricStatMap metric_stat_map{};
for (const auto & [label, objects] : class_objects_map) {
Stat<double> stat{};
const auto stamp = rclcpp::Time(objects.header.stamp);
for (const auto & object : objects.objects) {
const auto uuid = tier4_autoware_utils::toHexString(object.object_id);
if (!hasPassedTime(uuid, stamp)) {
continue;
}
const auto object_pose = object.kinematics.initial_pose_with_covariance.pose;
const auto history_path = history_path_map_.at(uuid).second;
if (history_path.empty()) {
continue;
}
stat.add(metrics::calcYawDeviation(history_path, object_pose));
}
stat.add(metrics::calcYawDeviation(history_path, object_pose));
metric_stat_map["yaw_deviation_" + convertLabelToString(label)] = stat;
}

MetricStatMap metric_stat_map;
metric_stat_map["yaw_deviation"] = stat;
return metric_stat_map;
}

MetricStatMap MetricsCalculator::calcPredictedPathDeviationMetrics(
const PredictedObjects & objects) const
const ClassObjectsMap & class_objects_map) const
{
const auto time_horizons = parameters_->prediction_time_horizons;

MetricStatMap metric_stat_map;
for (const double time_horizon : time_horizons) {
const auto stat = calcPredictedPathDeviationMetrics(objects, time_horizon);
std::ostringstream stream;
stream << std::fixed << std::setprecision(2) << time_horizon;
std::string time_horizon_str = stream.str();
metric_stat_map["predicted_path_deviation_" + time_horizon_str] = stat;
MetricStatMap metric_stat_map{};
for (const auto & [label, objects] : class_objects_map) {
for (const double time_horizon : time_horizons) {
const auto stat = calcPredictedPathDeviationMetrics(objects, time_horizon);
std::ostringstream stream;
stream << std::fixed << std::setprecision(2) << time_horizon;
std::string time_horizon_str = stream.str();
metric_stat_map
["predicted_path_deviation_" + convertLabelToString(label) + "_" + time_horizon_str] = stat;
}
}

return metric_stat_map;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,17 @@ bool isTargetObjectType(
(t == ObjectClassification::PEDESTRIAN && target_object_types.check_pedestrian));
}

ClassObjectsMap separateObjectsByClass(const PredictedObjects & objects)
{
ClassObjectsMap separated_objects;
for (const auto & object : objects.objects) {
const auto label = getHighestProbLabel(object.classification);
separated_objects[label].objects.push_back(object);
separated_objects[label].header = objects.header;
}
return separated_objects;
}

void filterObjectsByClass(
PredictedObjects & objects, const ObjectTypesToCheck & target_object_types)
{
Expand Down
Loading

0 comments on commit 7081a61

Please sign in to comment.