Skip to content

Commit

Permalink
fix spell
Browse files Browse the repository at this point in the history
Signed-off-by: kosuke55 <[email protected]>
  • Loading branch information
kosuke55 authored and masayukiaino committed Jun 28, 2024
1 parent 2ad918c commit 9d0cf2c
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 18 deletions.
6 changes: 3 additions & 3 deletions control_data_collecting_tool/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,9 @@ This package provides tools for automatically collecting data using pure pursuit
- This package aims to collect a dataset consisting of control inputs (i.e. `control_cmd`) and observation variables (i.e. `kinematic_state`, `steering_status`, etc).
- The collected dataset can be used as training dataset for learning-based controllers, including [smart_mpc](https://github.com/autowarefoundation/autoware.universe/tree/f30c0350861d020ad26a45806ab1334895122fab/control/smart_mpc_trajectory_follower).
- The data collecting approach is as follows:
- Seting a figure-eight target trajectory within the specified rectangular area.
- Setting a figure-eight target trajectory within the specified rectangular area.
- Following the trajectory using a pure pursuit control law.
- Adding noises to the trajectory and the control command for data diversity, improveing the prediction accuracy of learning model.
- Adding noises to the trajectory and the control command for data diversity, improving the prediction accuracy of learning model.

## How to use

Expand Down Expand Up @@ -101,7 +101,7 @@ ROS 2 params in `/data_collecting_pure_pursuit_trajectory_follower` node:
| :--------------------------------------- | :------- | :------------------------------------------------------------- | :------------ |
| `pure_pursuit_type` | `string` | Pure pursuit type (`naive` or `linearized` steer control law ) | `linearized` |
| `wheel_base` | `double` | Wheel base [m] | 2.79 |
| `acc_kp` | `double` | Accel command propotional gain | 0.5 |
| `acc_kp` | `double` | Accel command proportional gain | 0.5 |
| `lookahead_time` | `double` | Pure pursuit lookahead time [s] | 1.5 |
| `min_lookahead` | `double` | Pure pursuit minimum lookahead length [m] | 3.0 |
| `linearized_pure_pursuit_steer_kp_param` | `double` | Linearized pure pursuit steering P gain parameter | 2.0 |
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def getYaw(orientation_xyzw):
return R.from_quat(orientation_xyzw.reshape(-1, 4)).as_euler("xyz")[:, 2]


class DataCollectingPurePursuitTrajetoryFollower(Node):
class DataCollectingPurePursuitTrajectoryFollower(Node):
def __init__(self):
super().__init__("data_collecting_pure_pursuit_trajectory_follower")

Expand All @@ -61,7 +61,7 @@ def __init__(self):
self.declare_parameter(
"acc_kp",
0.5,
ParameterDescriptor(description="Pure pursuit accel command propotional gain"),
ParameterDescriptor(description="Pure pursuit accel command proportional gain"),
)

self.declare_parameter(
Expand Down Expand Up @@ -266,8 +266,8 @@ def pure_pursuit_control(
np.arctan2(pos_xy_ref_target[1] - pos_xy_obs[1], pos_xy_ref_target[0] - pos_xy_obs[0])
- pos_yaw_obs[0]
)
angz = 2.0 * longitudinal_vel_ref_nearest * np.sin(alpha) / wheel_base
steer = np.arctan(angz * wheel_base / longitudinal_vel_ref_nearest)
ang_z = 2.0 * longitudinal_vel_ref_nearest * np.sin(alpha) / wheel_base
steer = np.arctan(ang_z * wheel_base / longitudinal_vel_ref_nearest)

return np.array([pure_pursuit_acc_cmd, steer])

Expand All @@ -284,7 +284,7 @@ def linearized_pure_pursuit_control(
wheel_base = self.get_parameter("wheel_base").get_parameter_value().double_value
acc_kp = self.get_parameter("acc_kp").get_parameter_value().double_value

# Currently, the following params are not declareed as ROS 2 params.
# Currently, the following params are not declared as ROS 2 params.
lookahead_coef = self.get_parameter("lookahead_time").get_parameter_value().double_value
lookahead_intercept = self.get_parameter("min_lookahead").get_parameter_value().double_value

Expand Down Expand Up @@ -618,7 +618,7 @@ def control(self):
def main(args=None):
rclpy.init(args=args)

data_collecting_pure_pursuit_trajectory_follower = DataCollectingPurePursuitTrajetoryFollower()
data_collecting_pure_pursuit_trajectory_follower = DataCollectingPurePursuitTrajectoryFollower()

rclpy.spin(data_collecting_pure_pursuit_trajectory_follower)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def get_trajectory_points(
D = [(b - a) / 2, -a / 2]

# _O = [0.0, 0.0] # origin
R = a / 2 # radious of the circle
R = a / 2 # radius of the circle
OL = [-(b - a) / 2, 0] # center of the left circle
OR = [(b - a) / 2, 0] # center of the right circle
OB = np.sqrt((b - a) ** 2 + a**2) / 2 # half length of the linear trajectory
Expand Down Expand Up @@ -271,10 +271,10 @@ def updateNominalTargetTrajectory(self):

vec_from_center_to_point0_data = data_collecting_area[0, :2] - rectangle_center_position
vec_from_center_to_point1_data = data_collecting_area[1, :2] - rectangle_center_position
unitvec_from_center_to_point0_data = vec_from_center_to_point0_data / (
unit_vec_from_center_to_point0_data = vec_from_center_to_point0_data / (
np.sqrt((vec_from_center_to_point0_data**2).sum()) + 1e-10
)
unitvec_from_center_to_point1_data = vec_from_center_to_point1_data / (
unit_vec_from_center_to_point1_data = vec_from_center_to_point1_data / (
np.sqrt((vec_from_center_to_point1_data**2).sum()) + 1e-10
)

Expand All @@ -283,15 +283,19 @@ def updateNominalTargetTrajectory(self):
if la > lb:
long_side_length = la
short_side_length = lb
vec_long_side = -unitvec_from_center_to_point0_data + unitvec_from_center_to_point1_data
vec_long_side = (
-unit_vec_from_center_to_point0_data + unit_vec_from_center_to_point1_data
)
else:
long_side_length = lb
short_side_length = la
vec_long_side = unitvec_from_center_to_point0_data + unitvec_from_center_to_point1_data
unitvec_long_side = vec_long_side / np.sqrt((vec_long_side**2).sum())
if unitvec_long_side[1] < 0:
unitvec_long_side *= -1
yaw_offset = np.arccos(unitvec_long_side[0])
vec_long_side = (
unit_vec_from_center_to_point0_data + unit_vec_from_center_to_point1_data
)
unit_vec_long_side = vec_long_side / np.sqrt((vec_long_side**2).sum())
if unit_vec_long_side[1] < 0:
unit_vec_long_side *= -1
yaw_offset = np.arccos(unit_vec_long_side[0])
if yaw_offset > pi / 2:
yaw_offset -= pi

Expand Down

0 comments on commit 9d0cf2c

Please sign in to comment.