Skip to content

Commit

Permalink
Gen-AI python implementation (#290)
Browse files Browse the repository at this point in the history
*Issue #, if available:*

*Description of changes:*


By submitting this pull request, I confirm that you can use, modify,
copy, and redistribute this contribution, under the terms of your
choice.

---------

Co-authored-by: Jeel Mehta <[email protected]>
Co-authored-by: Michael He <[email protected]>
Co-authored-by: Min Xia <[email protected]>
  • Loading branch information
4 people authored Nov 22, 2024
1 parent 3b378a6 commit d305721
Show file tree
Hide file tree
Showing 3 changed files with 404 additions and 12 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,12 @@
# TODO: Use Semantic Conventions once upgrade to 0.47b0
GEN_AI_REQUEST_MODEL: str = "gen_ai.request.model"
GEN_AI_SYSTEM: str = "gen_ai.system"
GEN_AI_REQUEST_MAX_TOKENS: str = "gen_ai.request.max_tokens"
GEN_AI_REQUEST_TEMPERATURE: str = "gen_ai.request.temperature"
GEN_AI_REQUEST_TOP_P: str = "gen_ai.request.top_p"
GEN_AI_RESPONSE_FINISH_REASONS: str = "gen_ai.response.finish_reasons"
GEN_AI_USAGE_INPUT_TOKENS: str = "gen_ai.usage.input_tokens"
GEN_AI_USAGE_OUTPUT_TOKENS: str = "gen_ai.usage.output_tokens"


# Get dialect keywords retrieved from dialect_keywords.json file.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,13 @@
# SPDX-License-Identifier: Apache-2.0
import abc
import inspect
from typing import Dict, Optional
import io
import json
import logging
import math
from typing import Any, Dict, Optional

from botocore.response import StreamingBody

from amazon.opentelemetry.distro._aws_attribute_keys import (
AWS_BEDROCK_AGENT_ID,
Expand All @@ -11,7 +17,16 @@
AWS_BEDROCK_GUARDRAIL_ID,
AWS_BEDROCK_KNOWLEDGE_BASE_ID,
)
from amazon.opentelemetry.distro._aws_span_processing_util import GEN_AI_REQUEST_MODEL, GEN_AI_SYSTEM
from amazon.opentelemetry.distro._aws_span_processing_util import (
GEN_AI_REQUEST_MAX_TOKENS,
GEN_AI_REQUEST_MODEL,
GEN_AI_REQUEST_TEMPERATURE,
GEN_AI_REQUEST_TOP_P,
GEN_AI_RESPONSE_FINISH_REASONS,
GEN_AI_SYSTEM,
GEN_AI_USAGE_INPUT_TOKENS,
GEN_AI_USAGE_OUTPUT_TOKENS,
)
from opentelemetry.instrumentation.botocore.extensions.types import (
_AttributeMapT,
_AwsSdkCallContext,
Expand All @@ -28,6 +43,10 @@
_MODEL_ID: str = "modelId"
_AWS_BEDROCK_SYSTEM: str = "aws_bedrock"

_logger = logging.getLogger(__name__)
# Set logger level to DEBUG
_logger.setLevel(logging.DEBUG)


class _BedrockAgentOperation(abc.ABC):
"""
Expand Down Expand Up @@ -240,3 +259,168 @@ def extract_attributes(self, attributes: _AttributeMapT):
model_id = self._call_context.params.get(_MODEL_ID)
if model_id:
attributes[GEN_AI_REQUEST_MODEL] = model_id

# Get the request body if it exists
body = self._call_context.params.get("body")
if body:
try:
request_body = json.loads(body)

if "amazon.titan" in model_id:
self._extract_titan_attributes(attributes, request_body)
elif "anthropic.claude" in model_id:
self._extract_claude_attributes(attributes, request_body)
elif "meta.llama" in model_id:
self._extract_llama_attributes(attributes, request_body)
elif "cohere.command" in model_id:
self._extract_cohere_attributes(attributes, request_body)
elif "ai21.jamba" in model_id:
self._extract_ai21_attributes(attributes, request_body)
elif "mistral" in model_id:
self._extract_mistral_attributes(attributes, request_body)

except json.JSONDecodeError:
_logger.debug("Error: Unable to parse the body as JSON")

def _extract_titan_attributes(self, attributes, request_body):
config = request_body.get("textGenerationConfig", {})
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, config.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, config.get("topP"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, config.get("maxTokenCount"))

def _extract_claude_attributes(self, attributes, request_body):
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, request_body.get("max_tokens"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, request_body.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p"))

def _extract_cohere_attributes(self, attributes, request_body):
prompt = request_body.get("message")
if prompt:
attributes[GEN_AI_USAGE_INPUT_TOKENS] = math.ceil(len(prompt) / 6)
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, request_body.get("max_tokens"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, request_body.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, request_body.get("p"))

def _extract_ai21_attributes(self, attributes, request_body):
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, request_body.get("max_tokens"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, request_body.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p"))

def _extract_llama_attributes(self, attributes, request_body):
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, request_body.get("max_gen_len"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, request_body.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p"))

def _extract_mistral_attributes(self, attributes, request_body):
prompt = request_body.get("prompt")
if prompt:
attributes[GEN_AI_USAGE_INPUT_TOKENS] = math.ceil(len(prompt) / 6)
self._set_if_not_none(attributes, GEN_AI_REQUEST_MAX_TOKENS, request_body.get("max_tokens"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TEMPERATURE, request_body.get("temperature"))
self._set_if_not_none(attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p"))

@staticmethod
def _set_if_not_none(attributes, key, value):
if value is not None:
attributes[key] = value

def on_success(self, span: Span, result: Dict[str, Any]):
model_id = self._call_context.params.get(_MODEL_ID)

if not model_id:
return

if "body" in result and isinstance(result["body"], StreamingBody):
original_body = None
try:
original_body = result["body"]
body_content = original_body.read()

# Use one stream for telemetry
stream = io.BytesIO(body_content)
telemetry_content = stream.read()
response_body = json.loads(telemetry_content.decode("utf-8"))
if "amazon.titan" in model_id:
self._handle_amazon_titan_response(span, response_body)
elif "anthropic.claude" in model_id:
self._handle_anthropic_claude_response(span, response_body)
elif "meta.llama" in model_id:
self._handle_meta_llama_response(span, response_body)
elif "cohere.command" in model_id:
self._handle_cohere_command_response(span, response_body)
elif "ai21.jamba" in model_id:
self._handle_ai21_jamba_response(span, response_body)
elif "mistral" in model_id:
self._handle_mistral_mistral_response(span, response_body)
# Replenish stream for downstream application use
new_stream = io.BytesIO(body_content)
result["body"] = StreamingBody(new_stream, len(body_content))

except json.JSONDecodeError:
_logger.debug("Error: Unable to parse the response body as JSON")
except Exception as e: # pylint: disable=broad-exception-caught, invalid-name
_logger.debug("Error processing response: %s", e)
finally:
if original_body is not None:
original_body.close()

# pylint: disable=no-self-use
def _handle_amazon_titan_response(self, span: Span, response_body: Dict[str, Any]):
if "inputTextTokenCount" in response_body:
span.set_attribute(GEN_AI_USAGE_INPUT_TOKENS, response_body["inputTextTokenCount"])
if "results" in response_body and response_body["results"]:
result = response_body["results"][0]
if "tokenCount" in result:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, result["tokenCount"])
if "completionReason" in result:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [result["completionReason"]])

# pylint: disable=no-self-use
def _handle_anthropic_claude_response(self, span: Span, response_body: Dict[str, Any]):
if "usage" in response_body:
usage = response_body["usage"]
if "input_tokens" in usage:
span.set_attribute(GEN_AI_USAGE_INPUT_TOKENS, usage["input_tokens"])
if "output_tokens" in usage:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, usage["output_tokens"])
if "stop_reason" in response_body:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [response_body["stop_reason"]])

# pylint: disable=no-self-use
def _handle_cohere_command_response(self, span: Span, response_body: Dict[str, Any]):
# Output tokens: Approximate from the response text
if "text" in response_body:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, math.ceil(len(response_body["text"]) / 6))
if "finish_reason" in response_body:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [response_body["finish_reason"]])

# pylint: disable=no-self-use
def _handle_ai21_jamba_response(self, span: Span, response_body: Dict[str, Any]):
if "usage" in response_body:
usage = response_body["usage"]
if "prompt_tokens" in usage:
span.set_attribute(GEN_AI_USAGE_INPUT_TOKENS, usage["prompt_tokens"])
if "completion_tokens" in usage:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, usage["completion_tokens"])
if "choices" in response_body:
choices = response_body["choices"][0]
if "finish_reason" in choices:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [choices["finish_reason"]])

# pylint: disable=no-self-use
def _handle_meta_llama_response(self, span: Span, response_body: Dict[str, Any]):
if "prompt_token_count" in response_body:
span.set_attribute(GEN_AI_USAGE_INPUT_TOKENS, response_body["prompt_token_count"])
if "generation_token_count" in response_body:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, response_body["generation_token_count"])
if "stop_reason" in response_body:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [response_body["stop_reason"]])

# pylint: disable=no-self-use
def _handle_mistral_mistral_response(self, span: Span, response_body: Dict[str, Any]):
if "outputs" in response_body:
outputs = response_body["outputs"][0]
if "text" in outputs:
span.set_attribute(GEN_AI_USAGE_OUTPUT_TOKENS, math.ceil(len(outputs["text"]) / 6))
if "stop_reason" in outputs:
span.set_attribute(GEN_AI_RESPONSE_FINISH_REASONS, [outputs["stop_reason"]])
Loading

0 comments on commit d305721

Please sign in to comment.