-
Notifications
You must be signed in to change notification settings - Fork 542
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for EntityTypes dqdl rule
- Loading branch information
Joshua Zexter
committed
Jul 29, 2024
1 parent
101142e
commit 0ba95ac
Showing
3 changed files
with
194 additions
and
0 deletions.
There are no files selected for viewing
67 changes: 67 additions & 0 deletions
67
src/main/scala/com/amazon/deequ/analyzers/ConditionalAggregationAnalyzer.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
/** | ||
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.analyzers | ||
|
||
import com.amazon.deequ.metrics.AttributeDoubleMetric | ||
import com.amazon.deequ.metrics.Entity | ||
import org.apache.spark.sql.DataFrame | ||
|
||
import scala.util.Failure | ||
import scala.util.Success | ||
import scala.util.Try | ||
|
||
// Define a custom state to hold aggregation results | ||
case class AggregatedMetricState(counts: Map[String, Int], totalRows: Int) | ||
extends DoubleValuedState[AggregatedMetricState] { | ||
|
||
def sum(other: AggregatedMetricState): AggregatedMetricState = { | ||
val combinedCounts = counts ++ other | ||
.counts | ||
.map { case (k, v) => k -> (v + counts.getOrElse(k, 0)) } | ||
AggregatedMetricState(combinedCounts, totalRows + other.totalRows) | ||
} | ||
|
||
def metricValue(): Double = counts.values.sum.toDouble / totalRows | ||
} | ||
|
||
// Define the analyzer | ||
case class ConditionalAggregationAnalyzer(aggregatorFunc: DataFrame => AggregatedMetricState, metricName: String, instance: String) | ||
extends Analyzer[AggregatedMetricState, AttributeDoubleMetric] { | ||
|
||
def computeStateFrom(data: DataFrame, filterCondition: Option[String] = None): Option[AggregatedMetricState] = { | ||
Try(aggregatorFunc(data)) match { | ||
case Success(state) => Some(state) | ||
case Failure(_) => None | ||
} | ||
} | ||
|
||
def computeMetricFrom(state: Option[AggregatedMetricState]): AttributeDoubleMetric = { | ||
state match { | ||
case Some(detState) => | ||
val metrics = detState.counts.map { case (key, count) => | ||
key -> (count.toDouble / detState.totalRows) | ||
} | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, Success(metrics)) | ||
case None => | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, | ||
Failure(new RuntimeException("Metric computation failed"))) | ||
} | ||
} | ||
|
||
override private[deequ] def toFailureMetric(failure: Exception): AttributeDoubleMetric = { | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, Failure(failure)) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
110 changes: 110 additions & 0 deletions
110
src/test/scala/com/amazon/deequ/analyzers/ConditionalAggregationAnalyzerTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
/** | ||
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.analyzers | ||
|
||
import com.amazon.deequ.SparkContextSpec | ||
import com.amazon.deequ.utils.FixtureSupport | ||
import org.scalatest.matchers.should.Matchers | ||
import org.scalatest.wordspec.AnyWordSpec | ||
|
||
import scala.util.Failure | ||
import scala.util.Success | ||
|
||
import org.apache.spark.sql.SparkSession | ||
import org.apache.spark.sql.DataFrame | ||
|
||
import com.amazon.deequ.metrics.AttributeDoubleMetric | ||
|
||
class ConditionalAggregationAnalyzerTest extends AnyWordSpec with Matchers with SparkContextSpec with FixtureSupport { | ||
|
||
"ConditionalAggregationAnalyzerTest" should { | ||
|
||
"Example use: return correct counts for product sales in different categories" in withSparkSession | ||
{ session => | ||
val data = getDfWithIdColumn(session) | ||
val mockLambda: DataFrame => AggregatedMetricState = _ => | ||
AggregatedMetricState(Map("ProductA" -> 50, "ProductB" -> 45), 100) | ||
|
||
val analyzer = ConditionalAggregationAnalyzer(mockLambda, "ProductSales", "category") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
metric.value.get should contain ("ProductA" -> 0.5) | ||
metric.value.get should contain ("ProductB" -> 0.45) | ||
} | ||
|
||
"handle scenarios with no data points effectively" in withSparkSession { session => | ||
val data = getDfWithIdColumn(session) | ||
val mockLambda: DataFrame => AggregatedMetricState = _ => | ||
AggregatedMetricState(Map.empty[String, Int], 100) | ||
|
||
val analyzer = ConditionalAggregationAnalyzer(mockLambda,"WebsiteTraffic", "page") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
metric.value.get shouldBe empty | ||
} | ||
|
||
"return a failure metric when the lambda function fails" in withSparkSession { session => | ||
val data = getDfWithIdColumn(session) | ||
val failingLambda: DataFrame => AggregatedMetricState = _ => throw new RuntimeException("Test failure") | ||
|
||
val analyzer = ConditionalAggregationAnalyzer(failingLambda,"ProductSales", "category") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isFailure shouldBe true | ||
metric.value match { | ||
case Success(_) => fail("Should have failed due to lambda function failure") | ||
case Failure(exception) => exception.getMessage shouldBe "Metric computation failed" | ||
} | ||
} | ||
|
||
"return a failure metric if there are no rows in DataFrame" in withSparkSession { session => | ||
val emptyData = session.createDataFrame(session.sparkContext.emptyRDD[org.apache.spark.sql.Row], | ||
getDfWithIdColumn(session).schema) | ||
val mockLambda: DataFrame => AggregatedMetricState = df => | ||
if (df.isEmpty) throw new RuntimeException("No data to analyze") // Explicitly fail if the data is empty | ||
else AggregatedMetricState(Map("ProductA" -> 0, "ProductB" -> 0), 0) | ||
|
||
val analyzer = ConditionalAggregationAnalyzer(mockLambda,"ProductSales", "category") | ||
|
||
val state = analyzer.computeStateFrom(emptyData) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isFailure shouldBe true | ||
metric.value match { | ||
case Success(_) => fail("Should have failed due to no data") | ||
case Failure(exception) => exception.getMessage should include("Metric computation failed") | ||
} | ||
} | ||
} | ||
|
||
def getDfWithIdColumn(session: SparkSession): DataFrame = { | ||
import session.implicits._ | ||
Seq( | ||
("ProductA", "North"), | ||
("ProductA", "South"), | ||
("ProductB", "East"), | ||
("ProductA", "West") | ||
).toDF("product", "region") | ||
} | ||
} |