-
Notifications
You must be signed in to change notification settings - Fork 542
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
MetricsRepository using Spark tables as the data source (#518)
* spark table repository * review comments --------- Co-authored-by: vpenikalapati <[email protected]>
- Loading branch information
Showing
4 changed files
with
306 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
130 changes: 130 additions & 0 deletions
130
src/main/scala/com/amazon/deequ/repository/sparktable/SparkMetricsRepository.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
/** | ||
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.repository.sparktable | ||
|
||
import com.amazon.deequ.analyzers.Analyzer | ||
import com.amazon.deequ.analyzers.runners.AnalyzerContext | ||
import com.amazon.deequ.metrics.Metric | ||
import com.amazon.deequ.repository._ | ||
import org.apache.spark.sql.functions._ | ||
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession} | ||
|
||
class SparkTableMetricsRepository(session: SparkSession, tableName: String) extends MetricsRepository { | ||
|
||
import session.implicits._ | ||
|
||
override def save(resultKey: ResultKey, analyzerContext: AnalyzerContext): Unit = { | ||
val serializedContext = AnalysisResultSerde.serialize(Seq(AnalysisResult(resultKey, analyzerContext))) | ||
|
||
val successfulMetrics = analyzerContext.metricMap | ||
.filter { case (_, metric) => metric.value.isSuccess } | ||
|
||
val metricDF = successfulMetrics.map { case (analyzer, metric) => | ||
SparkTableMetric(resultKey.toString, analyzer.toString, metric.value.toString, | ||
resultKey.dataSetDate, serializedContext) | ||
}.toSeq.toDF() | ||
|
||
metricDF.write | ||
.mode(SaveMode.Append) | ||
.saveAsTable(tableName) | ||
} | ||
|
||
override def loadByKey(resultKey: ResultKey): Option[AnalyzerContext] = { | ||
val df: DataFrame = session.table(tableName) | ||
val matchingRows = df.filter(col("resultKey") === resultKey.toString).collect() | ||
|
||
if (matchingRows.isEmpty) { | ||
None | ||
} else { | ||
val serializedContext = matchingRows(0).getAs[String]("serializedContext") | ||
AnalysisResultSerde.deserialize(serializedContext).headOption.map(_.analyzerContext) | ||
} | ||
} | ||
|
||
override def load(): MetricsRepositoryMultipleResultsLoader = { | ||
SparkTableMetricsRepositoryMultipleResultsLoader(session, tableName) | ||
} | ||
|
||
} | ||
|
||
case class SparkTableMetric(resultKey: String, metricName: String, metricValue: String, resultTimestamp: Long, | ||
serializedContext: String) | ||
|
||
case class SparkTableMetricsRepositoryMultipleResultsLoader(session: SparkSession, | ||
tableName: String, | ||
private val tagValues: Option[Map[String, String]] = None, | ||
private val analyzers: Option[Seq[Analyzer[_, Metric[_]]]] | ||
= None, | ||
private val timeAfter: Option[Long] = None, | ||
private val timeBefore: Option[Long] = None | ||
) extends MetricsRepositoryMultipleResultsLoader { | ||
|
||
override def withTagValues(tagValues: Map[String, String]): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(tagValues = Some(tagValues)) | ||
|
||
override def forAnalyzers(analyzers: Seq[Analyzer[_, Metric[_]]]): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(analyzers = Some(analyzers)) | ||
|
||
override def after(dateTime: Long): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(timeAfter = Some(dateTime)) | ||
|
||
override def before(dateTime: Long): MetricsRepositoryMultipleResultsLoader = | ||
this.copy(timeBefore = Some(dateTime)) | ||
|
||
override def get(): Seq[AnalysisResult] = { | ||
val initialDF: DataFrame = session.table(tableName) | ||
|
||
val tagValuesFilter: DataFrame => DataFrame = df => { | ||
tagValues.map { tags => | ||
tags.foldLeft(df) { (currentDF, tag) => | ||
currentDF.filter(row => { | ||
val ser = row.getAs[String]("serializedContext") | ||
AnalysisResultSerde.deserialize(ser).exists(ar => { | ||
val tags = ar.resultKey.tags | ||
tags.contains(tag._1) && tags(tag._1) == tag._2 | ||
}) | ||
}) | ||
} | ||
}.getOrElse(df) | ||
} | ||
|
||
val specificAnalyzersFilter: DataFrame => DataFrame = df => { | ||
analyzers.map(analyzers => df.filter(col("metricName").isin(analyzers.map(_.toString): _*))) | ||
.getOrElse(df) | ||
} | ||
|
||
val timeAfterFilter: DataFrame => DataFrame = df => { | ||
timeAfter.map(time => df.filter(col("resultTimestamp") > time.toString)).getOrElse(df) | ||
} | ||
|
||
val timeBeforeFilter: DataFrame => DataFrame = df => { | ||
timeBefore.map(time => df.filter(col("resultTimestamp") < time.toString)).getOrElse(df) | ||
} | ||
|
||
val filteredDF = Seq(tagValuesFilter, specificAnalyzersFilter, timeAfterFilter, timeBeforeFilter) | ||
.foldLeft(initialDF) { | ||
(df, filter) => filter(df) | ||
} | ||
|
||
// Convert the final DataFrame to the desired output format | ||
filteredDF.collect().flatMap(row => { | ||
val serializedContext = row.getAs[String]("serializedContext") | ||
AnalysisResultSerde.deserialize(serializedContext) | ||
}).toSeq | ||
} | ||
|
||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
121 changes: 121 additions & 0 deletions
121
src/test/scala/com/amazon/deequ/repository/sparktable/SparkTableMetricsRepositoryTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
/** | ||
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
|
||
package com.amazon.deequ.repository.sparktable | ||
|
||
import com.amazon.deequ.SparkContextSpec | ||
import com.amazon.deequ.analyzers.Size | ||
import com.amazon.deequ.analyzers.runners.AnalyzerContext | ||
import com.amazon.deequ.metrics.{DoubleMetric, Entity} | ||
import com.amazon.deequ.repository.ResultKey | ||
import com.amazon.deequ.utils.FixtureSupport | ||
import org.scalatest.wordspec.AnyWordSpec | ||
|
||
import scala.util.Try | ||
|
||
class SparkTableMetricsRepositoryTest extends AnyWordSpec | ||
with SparkContextSpec | ||
with FixtureSupport { | ||
|
||
// private var spark: SparkSession = _ | ||
// private var repository: SparkTableMetricsRepository = _ | ||
private val analyzer = Size() | ||
|
||
"spark table metrics repository " should { | ||
"save and load a single metric" in withSparkSessionCustomWareHouse { spark => | ||
val resultKey = ResultKey(System.currentTimeMillis(), Map("tag" -> "value")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
// Save the metric | ||
repository.save(resultKey, context) | ||
|
||
// Load the metric | ||
val loadedContext = repository.loadByKey(resultKey) | ||
|
||
assert(loadedContext.isDefined) | ||
assert(loadedContext.get.metric(analyzer).contains(metric)) | ||
|
||
} | ||
|
||
"save multiple metrics and load them" in withSparkSessionCustomWareHouse { spark => | ||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
|
||
val resultKey1 = ResultKey(System.currentTimeMillis(), Map("tag" -> "tagValue1")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context1 = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val resultKey2 = ResultKey(System.currentTimeMillis(), Map("tag" -> "tagValue2")) | ||
val metric2 = DoubleMetric(Entity.Column, "m2", "", Try(101)) | ||
val context2 = AnalyzerContext(Map(analyzer -> metric2)) | ||
|
||
repository.save(resultKey1, context1) | ||
repository.save(resultKey2, context2) | ||
|
||
val loadedMetrics = repository.load().get() | ||
|
||
assert(loadedMetrics.length == 2) | ||
|
||
loadedMetrics.flatMap(_.resultKey.tags) | ||
|
||
} | ||
|
||
"save and load metrics with tag" in withSparkSessionCustomWareHouse { spark => | ||
val repository = new SparkTableMetricsRepository(spark, "metrics_table") | ||
|
||
val resultKey1 = ResultKey(System.currentTimeMillis(), Map("tag" -> "A")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context1 = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val resultKey2 = ResultKey(System.currentTimeMillis(), Map("tag" -> "B")) | ||
val metric2 = DoubleMetric(Entity.Column, "m2", "", Try(101)) | ||
val context2 = AnalyzerContext(Map(analyzer -> metric2)) | ||
|
||
repository.save(resultKey1, context1) | ||
repository.save(resultKey2, context2) | ||
val loadedMetricsForTagA = repository.load().withTagValues(Map("tag" -> "A")).get() | ||
assert(loadedMetricsForTagA.length == 1) | ||
|
||
val tagsMapA = loadedMetricsForTagA.flatMap(_.resultKey.tags).toMap | ||
assert(tagsMapA.size == 1, "should have 1 result") | ||
assert(tagsMapA.contains("tag"), "should contain tag") | ||
assert(tagsMapA("tag") == "A", "tag should be A") | ||
|
||
val loadedMetricsForAllMetrics = repository.load().forAnalyzers(Seq(analyzer)).get() | ||
assert(loadedMetricsForAllMetrics.length == 2, "should have 2 results") | ||
|
||
} | ||
|
||
"save and load to iceberg a single metric" in withSparkSessionIcebergCatalog { spark => { | ||
val resultKey = ResultKey(System.currentTimeMillis(), Map("tag" -> "value")) | ||
val metric = DoubleMetric(Entity.Column, "m1", "", Try(100)) | ||
val context = AnalyzerContext(Map(analyzer -> metric)) | ||
|
||
val repository = new SparkTableMetricsRepository(spark, "local.metrics_table") | ||
// Save the metric | ||
repository.save(resultKey, context) | ||
|
||
// Load the metric | ||
val loadedContext = repository.loadByKey(resultKey) | ||
|
||
assert(loadedContext.isDefined) | ||
assert(loadedContext.get.metric(analyzer).contains(metric)) | ||
} | ||
|
||
} | ||
} | ||
} |