-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhume_sound_ros.py~
318 lines (263 loc) · 13.8 KB
/
hume_sound_ros.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from __future__ import division
import shutil
import array
import asyncio
from base64 import b64encode
from io import BytesIO
from threading import Lock
import traceback
import time
from datetime import datetime
import websockets
from audio_common_msgs.msg import AudioData
from hume import HumeStreamClient
from hume.models.config import BurstConfig
from hume.models.config import ProsodyConfig
from hume import StreamSocket
import numpy as np
from pydub import AudioSegment
from pydub import effects
import rospy
import soundfile as sf
# from audio_buffer import AudioBuffer
from std_msgs.msg import UInt16
class AudioBuffer(object):
def __init__(self, topic_name='~audio',
input_sample_rate=16000,
window_size=10.0,
bitdepth=16,
n_channel=1, target_channel=0,
get_latest_data=False,
discard_data=False,
auto_start=False):
self.is_subscribing = True
self.get_latest_data = get_latest_data
self.discard_data = discard_data
self._window_size = window_size
self.audio_buffer_len = int(self._window_size * input_sample_rate)
self.lock = Lock()
self.bitdepth = bitdepth
self.n_channel = n_channel
self.target_channel = min(self.n_channel - 1, max(0, target_channel))
self.input_sample_rate = input_sample_rate
self.type_code = {}
for code in ['b', 'h', 'i', 'l']:
self.type_code[array.array(code).itemsize] = code
self.dtype = self.type_code[self.bitdepth / 8]
self.audio_buffer = np.array([], dtype=self.dtype)
self.max_value = 2 ** (self.bitdepth - 1) - 1
self.topic_name = topic_name
if auto_start:
self.subscribe()
def __len__(self):
return len(self.audio_buffer)
@property
def window_size(self):
return self._window_size
@window_size.setter
def window_size(self, size):
with self.lock:
self._window_size = size
self.audio_buffer_len = int(self._window_size
* self.input_sample_rate)
self.audio_buffer = np.array([], dtype=self.dtype)
@staticmethod
def from_rosparam(**kwargs):
n_channel = rospy.get_param('~n_channel', 1)
target_channel = rospy.get_param('~target_channel', 0)
mic_sampling_rate = rospy.get_param('~mic_sampling_rate', 16000)
bitdepth = rospy.get_param('~bitdepth', 16)
return AudioBuffer(input_sample_rate=mic_sampling_rate,
bitdepth=bitdepth,
n_channel=n_channel,
target_channel=target_channel,
**kwargs)
def subscribe(self):
self.audio_buffer = np.array([], dtype=self.dtype)
self.sub_audio = rospy.Subscriber(
self.topic_name, AudioData, self.audio_cb)
def unsubscribe(self):
self.sub_audio.unregister()
def _read(self, size, normalize=False):
with self.lock:
if self.get_latest_data:
audio_buffer = self.audio_buffer[-size:]
else:
audio_buffer = self.audio_buffer[:size]
if self.discard_data:
self.audio_buffer = self.audio_buffer[size:]
if normalize is True:
audio_buffer = audio_buffer / self.max_value
return audio_buffer
def sufficient_data(self, size):
return len(self.audio_buffer) < size
def read(self, size=None, wait=False, normalize=False):
if size is None:
size = self.audio_buffer_len
size = int(size * self.input_sample_rate)
while wait is True \
and not rospy.is_shutdown() and len(self.audio_buffer) < size:
rospy.sleep(0.001)
return self._read(size, normalize=normalize)
def close(self):
try:
self.sub_audio.unregister()
except Exception:
pass
self.audio_buffer = np.array([], dtype=self.dtype)
def audio_cb(self, msg):
audio_buffer = np.frombuffer(msg.data, dtype=self.dtype)
audio_buffer = audio_buffer[self.target_channel::self.n_channel]
with self.lock:
self.audio_buffer = np.append(
self.audio_buffer, audio_buffer)
self.audio_buffer = self.audio_buffer[
-self.audio_buffer_len:]
rospy.init_node('hume_sound')
audio_buffer = AudioBuffer(
# topic_name='/left_ear/audio',
topic_name='/audio',
#topic_name = '/audio/audio',
window_size=2,
auto_start=True)
api_key = 'utjx9xeqrdqJxOQ33vpKZLK3q2vCyhZucpmqZ3YVHBCJAqYy'
def on_shutdown():
print('on_shutdown called')
audio_buffer.unsubscribe()
audio_buffer.audio_buffer = np.array([], dtype=audio_buffer.dtype)
rospy.on_shutdown(on_shutdown)
rospy.sleep(1.0)
wave_counter = 0
def encode_audio():
global wave_counter
wav_outpath = '/tmp/hoge.wav'
bytes_io = BytesIO()
with sf.SoundFile(wav_outpath, mode='w',
samplerate=audio_buffer.input_sample_rate,
channels=audio_buffer.n_channel,
format='wav') as f:
tmp = audio_buffer.read()
f.write(tmp)
segment = AudioSegment.from_file(file=wav_outpath,
format="wav")
segment.export(bytes_io, format="wav")
shutil.copy(wav_outpath, '/tmp/hoge{}.wav'.format(wave_counter))
wave_counter += 1
return b64encode(bytes_io.read())
client = HumeStreamClient(api_key)
configs = [BurstConfig(),ProsodyConfig()]
async def classify_emotions(pred):
#humeにおける感情分析では種類が多すぎるので7種に分割
star_scores = []
heart_scores = []
sad_scores = []
angry_scores = []
tired_scores = []
happy_scores = []
neutral_scores = []
for emotion in pred['emotions']: #predは辞書であってリストではないので上の行とまとめて書くのは無理
if emotion['name'] in ['Excitement','Interest','Admiration','Surprise (positive)','desire','Triumph', 'Ecstasy', 'Joy','Satisfaction','Amusement', 'Contentment']: #orで結ぶならif emotion['name'] == 'Excitement' or emotion['name'] == 'Interest' or ...
star_scores.append(emotion['score'])
elif emotion['name'] in ['Adoration','Love','Entrancement','Romance', 'Relief','Aesthetic Appreciation']:
heart_scores.append(emotion['score'])
elif emotion['name'] in ['Awkwardness','Disappointment','Distress','Anxiety','Sadness','Pain','Surprise (negative)','Fear','Empathic Pain','Horror']:
sad_scores.append(emotion['score'])
elif emotion['name'] in ['Anger', 'Disgust']:
angry_scores.append(emotion['score'])
elif emotion['name'] in ['Boredom','Tiredness','Contempt','Doubt']:
tired_scores.append(emotion['score'])
# elif emotion['name'] in []:
# happy_scores.append(emotion['score'])
elif emotion['name'] in ['Calmness','Awe','Confusion','Embarrassment','Envy','Sympathy','Pride','Realization','Determination','Nostalgia','Craving','Concentration','Contemplation','Guilt','Shame']:
neutral_scores.append(emotion['score'])
avg_star_score = sum(star_scores)/len(star_scores) if star_scores else 0
avg_heart_score = sum(heart_scores)/len(heart_scores) if heart_scores else 0
avg_sad_score = sum(sad_scores)/len(sad_scores) if sad_scores else 0
avg_angry_score = sum(angry_scores)/len(angry_scores) if angry_scores else 0
avg_tired_score = sum(tired_scores)/len(tired_scores) if tired_scores else 0
#avg_happy_score = sum(happy_scores)/len(happy_scores) if happy_scores else 0
avg_neutral_score = sum(neutral_scores)/len(neutral_scores) if neutral_scores else 0
state = max([
('star', avg_star_score),
('heart', avg_heart_score),
('sad', avg_sad_score),
('angry', avg_angry_score),
('tired', avg_tired_score),
# ('happy', avg_happy_score),
('neutral', avg_neutral_score)
], key=lambda x: x[1])
global state_name
state_name, state_score = state
print(f"The dominant emotion is {state_name} with a score of {state_score}")
# await asyncio.sleep(1)
async def set_eye_status(state_name):
if state_name == 'neutral':
data_value = 1
elif state_name == 'sad':
data_value = 5
elif state_name == 'tired':
data_value = 3
elif state_name == 'angry':
data_value = 4
elif state_name == 'star':
data_value = 6
elif state_name == 'heart':
data_value = 7
else:
data_value = 0 # デフォルトの値
# UInt16型のメッセージを作成し、dataを設定してパブリッシュ
eye_status_message = UInt16(data=data_value)
eye_status_publisher.publish(eye_status_message)
async def send_audio():
global state_name
try:
async with client.connect(configs) as socket:
socket: StreamSocket
while True:
result = None
await socket.reset_stream()
send_bytes = encode_audio()
print(len(send_bytes))
if len(send_bytes) <= 100:
break
#time1=datetime.now()
try:
result = await socket.send_bytes(send_bytes)
except websockets.exceptions.ConnectionClosedError as e:
print("send bytes failed")
continue
#time2 = datetime.now()
#time.sleep(1.0)
print(result)
if 'predictions' in result['prosody']:
for pred in result['prosody']['predictions']:
emotions_sorted = sorted(pred['emotions'], key=lambda x: -x['score'])
emotions_sorted = emotions_sorted[:8] #score上位8個を取り出す
#for emotion in emotions_sorted:
#print(emotion)
#print(emotions_sorted[0])
await classify_emotions(pred)
await set_eye_status(state_name)
if 'predictions' in result['burst']:
for pred in result['burst']['predictions']:
emotions_sorted = sorted(pred['emotions'], key=lambda x: -x['score'])
emotions_sorted = emotions_sorted[:8] #score上位8個を取り出す
#for emotion in emotions_sorted:
#print(emotion)
#print(emotions_sorted[0])
await classify_emotions(pred)
await set_eye_status(state_name)
#end = datetime.now()
#print(time2-time1)
#print(end-time2)
await asyncio.sleep(1)
except Exception:
print(traceback.format_exc())
#main関数
# ROSノードを初期化
#rospy.init_node('eye_status_publisher', anonymous=True)
# Publisherを作成
eye_status_publisher = rospy.Publisher('/eye_status', UInt16, queue_size=1)
# グローバル変数としてstate_nameを定義
state_name = 'neutral' # 初期値を設定
asyncio.run(send_audio())