Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update convert to simularium task for patch simulations #63

Merged
merged 7 commits into from
Nov 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
199 changes: 169 additions & 30 deletions src/arcade_collection/convert/convert_to_simularium.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
import itertools
import random
import tarfile
from math import cos, isnan, pi, sin, sqrt
from typing import Optional, Union

import numpy as np
Expand All @@ -20,27 +22,72 @@
from arcade_collection.output.extract_tick_json import extract_tick_json
from arcade_collection.output.get_location_voxels import get_location_voxels

CELL_STATES: list[str] = [
"UNDEFINED",
"APOPTOTIC",
"QUIESCENT",
"MIGRATORY",
"PROLIFERATIVE",
"SENESCENT",
"NECROTIC",
]

EDGE_TYPES: list[str] = [
"ARTERIOLE",
"ARTERY",
"CAPILLARY",
"VEIN",
"VENULE",
"UNDEFINED",
]


CAMERA_POSITIONS: dict[str, tuple[float, float, float]] = {
"patch": (0.0, -0.5, 900),
"potts": (10.0, 0.0, 200.0),
}

CAMERA_LOOK_AT: dict[str, tuple[float, float, float]] = {
"patch": (0.0, -0.2, 0.0),
"potts": (10.0, 0.0, 0.0),
}


def convert_to_simularium(
series_key: str,
cells_data_tar: tarfile.TarFile,
locations_data_tar: tarfile.TarFile,
simulation_type: str,
data_tars: dict[str, tarfile.TarFile],
frame_spec: tuple[int, int, int],
box: tuple[int, int, int],
ds: float,
dz: float,
dt: float,
phase_colors: dict[str, str],
colors: dict[str, str],
resolution: Optional[int] = None,
url: Optional[str] = None,
) -> str:
length, width, height = box
frames = list(np.arange(*frame_spec))

data = format_tar_data(series_key, cells_data_tar, locations_data_tar, frames, resolution)
if simulation_type == "patch":
frames = list(map(float, np.arange(*frame_spec)))
radius, margin, height = box
bounds = radius + margin
length = (2 / sqrt(3)) * (3 * (radius + margin) - 1)
width = 4 * (radius + margin) - 2
data = format_patch_tar_data(
series_key, data_tars["cells"], data_tars["graph"], frames, bounds
)
elif simulation_type == "potts":
frames = list(map(int, np.arange(*frame_spec)))
length, width, height = box
data = format_potts_tar_data(
series_key, data_tars["cells"], data_tars["locations"], frames, resolution
)
else:
raise ValueError(f"invalid simulation type {simulation_type}")

meta_data = get_meta_data(series_key, length, width, height, ds)
meta_data = get_meta_data(series_key, simulation_type, length, width, height, ds, dz)
agent_data = get_agent_data(data)
agent_data.display_data = get_display_data(series_key, data, phase_colors, url)
agent_data.display_data = get_display_data(series_key, data, colors, url)

for index, (frame, group) in enumerate(data.groupby("frame")):
n_agents = len(group)
Expand All @@ -49,9 +96,22 @@ def convert_to_simularium(
agent_data.unique_ids[index][:n_agents] = range(0, n_agents)
agent_data.types[index][:n_agents] = group["name"]
agent_data.radii[index][:n_agents] = group["radius"]
agent_data.positions[index][:n_agents, 0] = (group["x"] - length / 2.0) * ds
agent_data.positions[index][:n_agents, 1] = (width / 2.0 - group["y"]) * ds
agent_data.positions[index][:n_agents, 2] = (group["z"] - height / 2.0) * ds
agent_data.positions[index][:n_agents] = group[["x", "y", "z"]]
agent_data.n_subpoints[index][:n_agents] = group["points"].map(lambda points: len(points))
agent_data.viz_types[index][:n_agents] = group["points"].map(
lambda points: 1001 if points else 1000
)
agent_data.subpoints[index][:n_agents] = np.array(
list(itertools.zip_longest(*group["points"], fillvalue=0))
).T

agent_data.positions[:, :, 0] = (agent_data.positions[:, :, 0] - length / 2.0) * ds
agent_data.positions[:, :, 1] = (width / 2.0 - agent_data.positions[:, :, 1]) * ds
agent_data.positions[:, :, 2] = (agent_data.positions[:, :, 2] - height / 2.0) * dz

agent_data.subpoints[:, :, 0::3] = (agent_data.subpoints[:, :, 0::3]) * ds
agent_data.subpoints[:, :, 1::3] = (-agent_data.subpoints[:, :, 1::3]) * ds
agent_data.subpoints[:, :, 2::3] = (agent_data.subpoints[:, :, 2::3]) * dz

return TrajectoryConverter(
TrajectoryData(
Expand All @@ -63,18 +123,26 @@ def convert_to_simularium(
).to_JSON()


def get_meta_data(series_key: str, length: int, width: int, height: int, ds: float) -> MetaData:
def get_meta_data(
series_key: str,
simulation_type: str,
length: Union[int, float],
width: Union[int, float],
height: Union[int, float],
ds: float,
dz: float,
) -> MetaData:
meta_data = MetaData(
box_size=np.array([length * ds, width * ds, height * ds]),
box_size=np.array([length * ds, width * ds, height * dz]),
camera_defaults=CameraData(
position=np.array([10.0, 0.0, 200.0]),
look_at_position=np.array([10.0, 0.0, 0.0]),
position=np.array(CAMERA_POSITIONS[simulation_type]),
look_at_position=np.array(CAMERA_LOOK_AT[simulation_type]),
fov_degrees=60.0,
),
trajectory_title=f"ARCADE - {series_key}",
model_meta_data=ModelMetaData(
title="ARCADE",
version="3.0",
version=simulation_type,
description=(f"Agent-based modeling framework ARCADE for {series_key}."),
),
)
Expand All @@ -85,16 +153,17 @@ def get_meta_data(series_key: str, length: int, width: int, height: int, ds: flo
def get_agent_data(data: pd.DataFrame) -> AgentData:
total_frames = len(data["frame"].unique())
max_agents = data.groupby("frame")["name"].count().max()
return AgentData.from_dimensions(DimensionData(total_frames, max_agents))
max_subpoints = data["points"].map(lambda points: len(points)).max()
return AgentData.from_dimensions(DimensionData(total_frames, max_agents, max_subpoints))


def get_display_data(
series_key: str, data: pd.DataFrame, phase_colors: dict[str, str], url: Optional[str] = None
series_key: str, data: pd.DataFrame, colors: dict[str, str], url: Optional[str] = None
) -> DisplayData:
display_data = {}

for name in data["name"].unique():
region, cell_id, phase, frame = name.split("#")
group, cell_id, color_key, frame = name.split("#")

random.seed(cell_id)
jitter = (random.random() - 0.5) / 2
Expand All @@ -103,31 +172,99 @@ def get_display_data(
display_data[name] = DisplayData(
name=cell_id,
display_type=DISPLAY_TYPE.OBJ,
url=f"{url}/{series_key}_{int(frame):06d}_{int(cell_id):06d}_{region}.MESH.obj",
color=shade_color(phase_colors[phase], jitter),
url=f"{url}/{series_key}_{int(frame):06d}_{int(cell_id):06d}_{group}.MESH.obj",
color=shade_color(colors[color_key], jitter),
)
elif cell_id is None:
display_data[name] = DisplayData(
name=group,
display_type=DISPLAY_TYPE.FIBER,
color=colors[color_key],
)
else:
display_data[name] = DisplayData(
name=cell_id,
display_type=DISPLAY_TYPE.SPHERE,
color=shade_color(phase_colors[phase], jitter),
color=shade_color(colors[color_key], jitter),
)

return display_data


def format_tar_data(
def format_patch_tar_data(
series_key: str,
cells_tar: tarfile.TarFile,
locs_tar: tarfile.TarFile,
frames: list[int],
graph_tar: Optional[tarfile.TarFile],
frames: list[Union[int, float]],
bounds: int,
) -> pd.DataFrame:
data: list[list[Union[int, str, float]]] = []

theta = [pi * (60 * i) / 180.0 for i in range(6)]
dx = [cos(t) / sqrt(3) for t in theta]
dy = [sin(t) / sqrt(3) for t in theta]

for frame in frames:
cell_timepoint = extract_tick_json(cells_tar, series_key, frame, field="cells")

for location, cells in cell_timepoint:
u, v, w, z = location
rotation = random.randint(0, 5)

for cell in cells:
_, population, state, position, volume, _ = cell
cell_id = f"{u}{v}{w}{z}{position}"

name = f"POPULATION{population}#{cell_id}#{CELL_STATES[state]}#"
radius = (volume ** (1.0 / 3)) / 1.5

x = (u + bounds - 1) * sqrt(3) + 1
y = (v - w) + 2 * bounds - 1

center = [
(x + dx[(position + rotation) % 6]),
(y + dy[(position + rotation) % 6]),
z,
]

data = data + [[name, frame, radius] + center + [[]]]

if graph_tar is not None:
graph_timepoint = extract_tick_json(
graph_tar, series_key, frame, "GRAPH", field="graph"
)

for (from_node, to_node, edge) in graph_timepoint:
edge_type, radius, _, _, _, _, flow = edge

name = f"VASCULATURE##{'UNDEFINED' if isnan(flow) else EDGE_TYPES[edge_type + 2]}#"

subpoints = [
from_node[0] / sqrt(3),
from_node[1],
from_node[2],
to_node[0] / sqrt(3),
to_node[1],
to_node[2],
]

data = data + [[name, frame, radius] + [0, 0, 0] + [subpoints]]

return pd.DataFrame(data, columns=["name", "frame", "radius", "x", "y", "z", "points"])


def format_potts_tar_data(
series_key: str,
cells_tar: tarfile.TarFile,
locations_tar: tarfile.TarFile,
frames: list[Union[int, float]],
resolution: Optional[int],
) -> pd.DataFrame:
data: list[list[Union[int, str, float]]] = []

for frame in frames:
cells = extract_tick_json(cells_tar, series_key, frame, "CELLS")
locations = extract_tick_json(locs_tar, series_key, frame, "LOCATIONS")
locations = extract_tick_json(locations_tar, series_key, frame, "LOCATIONS")

for cell, location in zip(cells, locations):
regions = [loc["region"] for loc in location["location"]]
Expand All @@ -140,11 +277,11 @@ def format_tar_data(
if resolution is None:
radius = (len(all_voxels) ** (1.0 / 3)) / 1.5
center = list(np.array(all_voxels).mean(axis=0))
data = data + [[name, int(frame), radius] + center]
data = data + [[name, int(frame), radius] + center + [[]]]
elif resolution == 0:
radius = 1
center = list(np.array(all_voxels).mean(axis=0))
data = data + [[f"{name}{frame}", int(frame), radius] + center]
data = data + [[f"{name}{frame}", int(frame), radius] + center + [[]]]
else:
radius = resolution / 2
center_offset = (resolution - 1) / 2
Expand All @@ -156,9 +293,11 @@ def format_tar_data(
for x, y, z in border_voxels
]

data = data + [[name, int(frame), radius] + voxel for voxel in center_voxels]
data = data + [
[name, int(frame), radius] + voxel + [[]] for voxel in center_voxels
]

return pd.DataFrame(data, columns=["name", "frame", "radius", "x", "y", "z"])
return pd.DataFrame(data, columns=["name", "frame", "radius", "x", "y", "z", "points"])


def get_resolution_voxels(
Expand Down
23 changes: 21 additions & 2 deletions src/arcade_collection/output/extract_tick_json.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,28 @@
import json
import tarfile
from typing import Optional, Union

import numpy as np


def extract_tick_json(
tar: tarfile.TarFile,
key: str,
tick: Union[int, float],
extension: Optional[str] = None,
field: Optional[str] = None,
) -> list:
formatted_tick = f"_{tick:06d}" if isinstance(tick, (int, np.integer)) else ""

if extension is None:
member = tar.extractfile(f"{key}{formatted_tick}.json")
else:
member = tar.extractfile(f"{key}{formatted_tick}.{extension}.json")

def extract_tick_json(tar: tarfile.TarFile, key: str, tick: int, extension: str) -> list[dict]:
member = tar.extractfile(f"{key}_{tick:06d}.{extension}.json")
assert member is not None
tick_json = json.loads(member.read().decode("utf-8"))

if isinstance(tick, float):
tick_json = next(item for item in tick_json["timepoints"] if item["time"] == tick)[field]

return tick_json
Empty file.
14 changes: 14 additions & 0 deletions tests/arcade_collection/convert/test_convert_to_simularium.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import unittest

from arcade_collection.convert.convert_to_simularium import convert_to_simularium


class TestConvertToSimularium(unittest.TestCase):
def test_convert_to_simularium_invalid_type_throws_exception(self) -> None:
with self.assertRaises(ValueError):
simulation_type = "invalid_type"
convert_to_simularium("", simulation_type, {}, (0, 0, 0), (0, 0, 0), 0, 0, 0, {})


if __name__ == "__main__":
unittest.main()
6 changes: 0 additions & 6 deletions tests/arcade_collection/test_main.py

This file was deleted.