Skip to content

Commit

Permalink
Bump codeflare-sdk to 0.21.1 (red-hat-data-services#1910)
Browse files Browse the repository at this point in the history
  • Loading branch information
diegolovison authored Oct 15, 2024
1 parent 23ac87e commit 368804b
Show file tree
Hide file tree
Showing 2 changed files with 33 additions and 31 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@


# image and the sdk has a fixed value because the version matters
@dsl.component(packages_to_install=["codeflare-sdk==0.16.4"], base_image=common_base_image)
@dsl.component(packages_to_install=["codeflare-sdk==0.21.1"], base_image=common_base_image)
def ray_fn() -> int:
import ray # noqa: PLC0415
from codeflare_sdk import generate_cert # noqa: PLC0415
Expand All @@ -16,15 +16,16 @@ def ray_fn() -> int:
ClusterConfiguration(
name="raytest",
num_workers=1,
head_cpus=1,
head_memory=4,
min_cpus=1,
max_cpus=1,
min_memory=1,
max_memory=2,
num_gpus=0,
image="quay.io/project-codeflare/ray:2.20.0-py39-cu118",
verify_tls=False,
head_cpu_requests=1,
head_cpu_limits=1,
head_memory_requests=4,
head_memory_limits=4,
worker_cpu_requests=1,
worker_cpu_limits=1,
worker_memory_requests=1,
worker_memory_limits=2,
image="quay.io/modh/ray:2.35.0-py39-cu121",
verify_tls=False
)
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ deploymentSpec:
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.9.0'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' &&\
\ python3 -m pip install --quiet --no-warn-script-location 'codeflare-sdk==0.16.4'\
\ python3 -m pip install --quiet --no-warn-script-location 'codeflare-sdk==0.21.1'\
\ && \"$0\" \"$@\"\n"
- sh
- -ec
Expand All @@ -41,26 +41,27 @@ deploymentSpec:
\ import generate_cert # noqa: PLC0415\n from codeflare_sdk.cluster.cluster\
\ import Cluster, ClusterConfiguration # noqa: PLC0415\n\n cluster =\
\ Cluster(\n ClusterConfiguration(\n name=\"raytest\"\
,\n num_workers=1,\n head_cpus=1,\n head_memory=4,\n\
\ min_cpus=1,\n max_cpus=1,\n min_memory=1,\n\
\ max_memory=2,\n num_gpus=0,\n image=\"\
quay.io/project-codeflare/ray:2.20.0-py39-cu118\",\n verify_tls=False,\n\
\ )\n )\n\n # always clean the resources\n cluster.down()\n\
\ print(cluster.status())\n cluster.up()\n cluster.wait_ready()\n\
\ print(cluster.status())\n print(cluster.details())\n\n ray_dashboard_uri\
\ = cluster.cluster_dashboard_uri()\n ray_cluster_uri = cluster.cluster_uri()\n\
\ print(ray_dashboard_uri)\n print(ray_cluster_uri)\n\n # before\
\ proceeding make sure the cluster exists and the uri is not empty\n \
\ assert ray_cluster_uri, \"Ray cluster needs to be started and set before\
\ proceeding\"\n\n # reset the ray context in case there's already one.\n\
\ ray.shutdown()\n # establish connection to ray cluster\n generate_cert.generate_tls_cert(cluster.config.name,\
\ cluster.config.namespace)\n generate_cert.export_env(cluster.config.name,\
\ cluster.config.namespace)\n ray.init(address=cluster.cluster_uri(),\
\ logging_level=\"DEBUG\")\n print(\"Ray cluster is up and running: \"\
, ray.is_initialized())\n\n @ray.remote\n def train_fn():\n \
\ return 100\n\n result = ray.get(train_fn.remote())\n assert 100\
\ == result\n ray.shutdown()\n cluster.down()\n return result\n\
\n"
,\n num_workers=1,\n head_cpu_requests=1,\n \
\ head_cpu_limits=1,\n head_memory_requests=4,\n \
\ head_memory_limits=4,\n worker_cpu_requests=1,\n \
\ worker_cpu_limits=1,\n worker_memory_requests=1,\n \
\ worker_memory_limits=2,\n image=\"quay.io/modh/ray:2.35.0-py39-cu121\"\
,\n verify_tls=False\n )\n )\n\n # always clean\
\ the resources\n cluster.down()\n print(cluster.status())\n cluster.up()\n\
\ cluster.wait_ready()\n print(cluster.status())\n print(cluster.details())\n\
\n ray_dashboard_uri = cluster.cluster_dashboard_uri()\n ray_cluster_uri\
\ = cluster.cluster_uri()\n print(ray_dashboard_uri)\n print(ray_cluster_uri)\n\
\n # before proceeding make sure the cluster exists and the uri is not\
\ empty\n assert ray_cluster_uri, \"Ray cluster needs to be started and\
\ set before proceeding\"\n\n # reset the ray context in case there's\
\ already one.\n ray.shutdown()\n # establish connection to ray cluster\n\
\ generate_cert.generate_tls_cert(cluster.config.name, cluster.config.namespace)\n\
\ generate_cert.export_env(cluster.config.name, cluster.config.namespace)\n\
\ ray.init(address=cluster.cluster_uri(), logging_level=\"DEBUG\")\n\
\ print(\"Ray cluster is up and running: \", ray.is_initialized())\n\n\
\ @ray.remote\n def train_fn():\n return 100\n\n result\
\ = ray.get(train_fn.remote())\n assert 100 == result\n ray.shutdown()\n\
\ cluster.down()\n return result\n\n"
image: registry.redhat.io/ubi8/python-39@sha256:3523b184212e1f2243e76d8094ab52b01ea3015471471290d011625e1763af61
pipelineInfo:
description: Ray Integration Test
Expand Down

0 comments on commit 368804b

Please sign in to comment.