Skip to content

Commit

Permalink
Merge branch 'main' into subcell_positivity_nonconservative
Browse files Browse the repository at this point in the history
  • Loading branch information
amrueda committed Oct 31, 2023
2 parents 6f43419 + 61c33b0 commit 3e81bbb
Show file tree
Hide file tree
Showing 95 changed files with 14,031 additions and 9,119 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/FormatCheck.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ jobs:
# format(".")
run: |
julia -e 'using Pkg; Pkg.add(PackageSpec(name = "JuliaFormatter"))'
julia -e 'using JuliaFormatter; format(["benchmark", "ext", "src", "utils"])'
julia -e 'using JuliaFormatter; format(["benchmark", "ext", "src", "test", "utils"])'
- name: Format check
run: |
julia -e '
Expand Down
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ for human readability.
- Wetting and drying feature and examples for 1D and 2D shallow water equations
- Implementation of the polytropic Euler equations in 2D
- Subcell positivity limiting support for conservative variables in 2D for `TreeMesh`
- AMR for hyperbolic-parabolic equations on 2D/3D `TreeMesh`

#### Changed

Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Trixi"
uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"
authors = ["Michael Schlottke-Lakemper <[email protected]>", "Gregor Gassner <[email protected]>", "Hendrik Ranocha <[email protected]>", "Andrew R. Winters <[email protected]>", "Jesse Chan <[email protected]>"]
version = "0.5.47-pre"
version = "0.5.48-pre"

[deps]
CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,20 @@ using Trixi

# TODO: parabolic; unify names of these accessor functions
prandtl_number() = 0.72
mu() = 1.0/3.0 * 10^(-3) # equivalent to Re = 3000
mu() = 1.0/3.0 * 10^(-5) # equivalent to Re = 30,000

equations = CompressibleEulerEquations2D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(),
Prandtl=prandtl_number())

"""
A compressible version of the double shear layer initial condition. Adapted from
Brown and Minion (1995).
- David L. Brown and Michael L. Minion (1995)
Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations.
[DOI: 10.1006/jcph.1995.1205](https://doi.org/10.1006/jcph.1995.1205)
"""
function initial_condition_shear_layer(x, t, equations::CompressibleEulerEquations2D)
# Shear layer parameters
k = 80
Expand All @@ -22,8 +30,8 @@ function initial_condition_shear_layer(x, t, equations::CompressibleEulerEquatio
Ms = 0.1 # maximum Mach number

rho = 1.0
v1 = x[2] <= 0.5 ? u0 * tanh(k*(x[2]*0.5 - 0.25)) : u0 * tanh(k*(0.75 -x[2]*0.5))
v2 = u0 * delta * sin(2*pi*(x[1]*0.5 + 0.25))
v1 = x[2] <= 0.5 ? u0 * tanh(k*(x[2] - 0.25)) : u0 * tanh(k*(0.75 -x[2]))
v2 = u0 * delta * sin(2*pi*(x[1]+ 0.25))
p = (u0 / Ms)^2 * rho / equations.gamma # scaling to get Ms

return prim2cons(SVector(rho, v1, v2, p), equations)
Expand All @@ -47,27 +55,43 @@ semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabol
###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 2.0)
tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 50
analysis_callback = AnalysisCallback(semi, interval=analysis_interval, save_analysis=true,
extra_analysis_integrals=(energy_kinetic,
energy_internal,
enstrophy))
analysis_interval = 2000
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)

alive_callback = AliveCallback(analysis_interval=analysis_interval,)

# This uses velocity-based AMR
@inline function v1(u, equations::CompressibleEulerEquations2D)
rho, rho_v1, _, _ = u
return rho_v1 / rho
end
amr_indicator = IndicatorLöhner(semi, variable=v1)
amr_controller = ControllerThreeLevel(semi, amr_indicator,
base_level = 3,
med_level = 5, med_threshold=0.2,
max_level = 7, max_threshold=0.5)
amr_callback = AMRCallback(semi, amr_controller,
interval=50,
adapt_initial_condition=true,
adapt_initial_condition_only_refine=true)

stepsize_callback = StepsizeCallback(cfl=1.3)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback)
alive_callback,
amr_callback,
stepsize_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol,
ode_default_options()..., callback=callbacks)
sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false),
dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep=false, callback=callbacks);
summary_callback() # print the timer summary
93 changes: 93 additions & 0 deletions examples/tree_3d_dgsem/elixir_advection_diffusion_amr.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the linear advection equation

advection_velocity = (0.2, -0.7, 0.5)
equations = LinearScalarAdvectionEquation3D(advection_velocity)

diffusivity() = 5.0e-4
equations_parabolic = LaplaceDiffusion3D(diffusivity(), equations)

solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs)

coordinates_min = (-1.0, -1.0, -1.0)
coordinates_max = ( 1.0, 1.0, 1.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=4,
n_cells_max=80_000)

# Define initial condition
function initial_condition_diffusive_convergence_test(x, t, equation::LinearScalarAdvectionEquation3D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advection_velocity * t

nu = diffusivity()
c = 1.0
A = 0.5
L = 2
f = 1/L
omega = 2 * pi * f
scalar = c + A * sin(omega * sum(x_trans)) * exp(-2 * nu * omega^2 * t)
return SVector(scalar)
end
initial_condition = initial_condition_diffusive_convergence_test

# define periodic boundary conditions everywhere
boundary_conditions = boundary_condition_periodic
boundary_conditions_parabolic = boundary_condition_periodic

# A semidiscretization collects data structures and functions for the spatial discretization
semi = SemidiscretizationHyperbolicParabolic(mesh,
(equations, equations_parabolic),
initial_condition, solver;
boundary_conditions=(boundary_conditions,
boundary_conditions_parabolic))


###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.2)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval,
extra_analysis_integrals=(entropy,))

alive_callback = AliveCallback(analysis_interval=analysis_interval)

save_solution = SaveSolutionCallback(interval=100,
save_initial_solution=true,
save_final_solution=true,
solution_variables=cons2prim)

amr_controller = ControllerThreeLevel(semi, IndicatorMax(semi, variable=first),
base_level=3,
med_level=4, med_threshold=1.2,
max_level=5, max_threshold=1.45)
amr_callback = AMRCallback(semi, amr_controller,
interval=5,
adapt_initial_condition=true,
adapt_initial_condition_only_refine=true)

stepsize_callback = StepsizeCallback(cfl=1.0)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
save_solution,
amr_callback,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false),
dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep=false, callback=callbacks);
summary_callback() # print the timer summary
91 changes: 91 additions & 0 deletions examples/tree_3d_dgsem/elixir_advection_diffusion_nonperiodic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the linear advection-diffusion equation

diffusivity() = 5.0e-2
advection_velocity = (1.0, 0.0, 0.0)
equations = LinearScalarAdvectionEquation3D(advection_velocity)
equations_parabolic = LaplaceDiffusion3D(diffusivity(), equations)

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs)

coordinates_min = (-1.0, -0.5, -0.25) # minimum coordinates (min(x), min(y), min(z))
coordinates_max = ( 0.0, 0.5, 0.25) # maximum coordinates (max(x), max(y), max(z))

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=3,
periodicity=false,
n_cells_max=30_000) # set maximum capacity of tree data structure

# Example setup taken from
# - Truman Ellis, Jesse Chan, and Leszek Demkowicz (2016).
# Robust DPG methods for transient convection-diffusion.
# In: Building bridges: connections and challenges in modern approaches
# to numerical partial differential equations.
# [DOI](https://doi.org/10.1007/978-3-319-41640-3_6).
function initial_condition_eriksson_johnson(x, t, equations)
l = 4
epsilon = diffusivity() # TODO: this requires epsilon < .6 due to sqrt
lambda_1 = (-1 + sqrt(1 - 4 * epsilon * l)) / (-2 * epsilon)
lambda_2 = (-1 - sqrt(1 - 4 * epsilon * l)) / (-2 * epsilon)
r1 = (1 + sqrt(1 + 4 * pi^2 * epsilon^2)) / (2 * epsilon)
s1 = (1 - sqrt(1 + 4 * pi^2 * epsilon^2)) / (2 * epsilon)
u = exp(-l * t) * (exp(lambda_1 * x[1]) - exp(lambda_2 * x[1])) +
cos(pi * x[2]) * (exp(s1 * x[1]) - exp(r1 * x[1])) / (exp(-s1) - exp(-r1))
return SVector{1}(u)
end
initial_condition = initial_condition_eriksson_johnson

boundary_conditions = (; x_neg = BoundaryConditionDirichlet(initial_condition),
y_neg = BoundaryConditionDirichlet(initial_condition),
z_neg = boundary_condition_do_nothing,
y_pos = BoundaryConditionDirichlet(initial_condition),
x_pos = boundary_condition_do_nothing,
z_pos = boundary_condition_do_nothing)

boundary_conditions_parabolic = BoundaryConditionDirichlet(initial_condition)

# A semidiscretization collects data structures and functions for the spatial discretization
semi = SemidiscretizationHyperbolicParabolic(mesh,
(equations, equations_parabolic),
initial_condition, solver;
boundary_conditions=(boundary_conditions,
boundary_conditions_parabolic))


###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan);

# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
# and resets the timers
summary_callback = SummaryCallback()

# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)

# The AliveCallback prints short status information in regular intervals
alive_callback = AliveCallback(analysis_interval=analysis_interval)

# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback)


###############################################################################
# run the simulation

# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks
time_int_tol = 1.0e-11
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol,
ode_default_options()..., callback=callbacks)

# Print the timer summary
summary_callback()
2 changes: 1 addition & 1 deletion src/Trixi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ export AcousticPerturbationEquations2D,
LinearizedEulerEquations2D,
PolytropicEulerEquations2D

export LaplaceDiffusion1D, LaplaceDiffusion2D,
export LaplaceDiffusion1D, LaplaceDiffusion2D, LaplaceDiffusion3D,
CompressibleNavierStokesDiffusion1D, CompressibleNavierStokesDiffusion2D,
CompressibleNavierStokesDiffusion3D

Expand Down
43 changes: 6 additions & 37 deletions src/callbacks_step/amr_dg1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -83,30 +83,13 @@ function refine!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1},
# actually transferring the solution to the refined cells
refine!(u_ode, adaptor, mesh, equations, dg, cache, elements_to_refine)

# The remaining function only handles the necessary adaptation of the data structures
# for the parabolic part of the semidiscretization

# Get new list of leaf cells
leaf_cell_ids = local_leaf_cells(mesh.tree)

@unpack elements, viscous_container = cache_parabolic
resize!(elements, length(leaf_cell_ids))
init_elements!(elements, leaf_cell_ids, mesh, dg.basis)

# Resize parabolic helper variables
@unpack viscous_container = cache_parabolic
resize!(viscous_container, equations, dg, cache)

# re-initialize interfaces container
@unpack interfaces = cache_parabolic
resize!(interfaces, count_required_interfaces(mesh, leaf_cell_ids))
init_interfaces!(interfaces, elements, mesh)

# re-initialize boundaries container
@unpack boundaries = cache_parabolic
resize!(boundaries, count_required_boundaries(mesh, leaf_cell_ids))
init_boundaries!(boundaries, elements, mesh)
reinitialize_containers!(mesh, equations, dg, cache_parabolic)

# Sanity check
@unpack interfaces = cache_parabolic
if isperiodic(mesh.tree)
@assert ninterfaces(interfaces)==1 * nelements(dg, cache_parabolic) ("For 1D and periodic domains, the number of interfaces must be the same as the number of elements")
end
Expand Down Expand Up @@ -246,27 +229,13 @@ function coarsen!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1},
# actually transferring the solution to the coarsened cells
coarsen!(u_ode, adaptor, mesh, equations, dg, cache, elements_to_remove)

# Get new list of leaf cells
leaf_cell_ids = local_leaf_cells(mesh.tree)

@unpack elements, viscous_container = cache_parabolic
resize!(elements, length(leaf_cell_ids))
init_elements!(elements, leaf_cell_ids, mesh, dg.basis)

# Resize parabolic helper variables
@unpack viscous_container = cache_parabolic
resize!(viscous_container, equations, dg, cache)

# re-initialize interfaces container
@unpack interfaces = cache_parabolic
resize!(interfaces, count_required_interfaces(mesh, leaf_cell_ids))
init_interfaces!(interfaces, elements, mesh)

# re-initialize boundaries container
@unpack boundaries = cache_parabolic
resize!(boundaries, count_required_boundaries(mesh, leaf_cell_ids))
init_boundaries!(boundaries, elements, mesh)
reinitialize_containers!(mesh, equations, dg, cache_parabolic)

# Sanity check
@unpack interfaces = cache_parabolic
if isperiodic(mesh.tree)
@assert ninterfaces(interfaces)==1 * nelements(dg, cache_parabolic) ("For 1D and periodic domains, the number of interfaces must be the same as the number of elements")
end
Expand Down
Loading

0 comments on commit 3e81bbb

Please sign in to comment.