Skip to content

Commit

Permalink
Merge branch 'main' into feature/negative_data
Browse files Browse the repository at this point in the history
  • Loading branch information
Ertz012 authored Feb 1, 2024
2 parents 634356f + 0aaecc2 commit a6c184c
Show file tree
Hide file tree
Showing 11 changed files with 566 additions and 146 deletions.
6 changes: 6 additions & 0 deletions class_config/colored_robots.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
group_classes:
- robot_red
- robot_blue
- robot_unknown

surrogate_class: robot
2 changes: 2 additions & 0 deletions class_config/default.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
group_classes:
surrogate_class: ""
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "YOEO"
version = "1.4.3"
version = "1.5.0"
description = "A hybrid CNN for object detection and semantic segmentation"
authors = ["Florian Vahl <[email protected]>", "Jan Gutsche <[email protected]>"]

Expand Down
89 changes: 52 additions & 37 deletions yoeo/detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,14 @@
from torch.utils.data import DataLoader
from torch.autograd import Variable

from typing import Optional, List
from typing import Optional

from imgaug.augmentables.segmaps import SegmentationMapsOnImage

from yoeo.models import load_model
from yoeo.utils.utils import load_classes, rescale_boxes, non_max_suppression, print_environment_info, rescale_segmentation
from yoeo.utils.class_config import ClassConfig
from yoeo.utils.dataclasses import ClassNames, GroupConfig
from yoeo.utils.utils import rescale_boxes, non_max_suppression, print_environment_info, rescale_segmentation
from yoeo.utils.datasets import ImageFolder
from yoeo.utils.transforms import Resize, DEFAULT_TRANSFORMS

Expand All @@ -26,9 +28,9 @@
from matplotlib.ticker import NullLocator


def detect_directory(model_path, weights_path, img_path, classes, output_path,
def detect_directory(model_path, weights_path, img_path, class_config: ClassConfig, output_path,
batch_size=8, img_size=416, n_cpu=8, conf_thres=0.5, nms_thres=0.5,
robot_class_ids: Optional[List[int]] = None):
):
"""Detects objects on all images in specified directory and saves output images with drawn detections.
:param model_path: Path to model definition file (.cfg)
Expand All @@ -37,8 +39,8 @@ def detect_directory(model_path, weights_path, img_path, classes, output_path,
:type weights_path: str
:param img_path: Path to directory with images to inference
:type img_path: str
:param classes: List of class names
:type classes: [str]
:param class_config: Class configuration
:type class_config: ClassConfig
:param output_path: Path to output directory
:type output_path: str
:param batch_size: Size of each image batch, defaults to 8
Expand All @@ -51,8 +53,6 @@ def detect_directory(model_path, weights_path, img_path, classes, output_path,
:type conf_thres: float, optional
:param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
:type nms_thres: float, optional
:param robot_class_ids: List of class IDs of robot classes if multiple robot classes exist.
:type robot_class_ids: List[int], optional
"""
dataloader = _create_data_loader(img_path, batch_size, img_size, n_cpu)
model = load_model(model_path, weights_path)
Expand All @@ -63,29 +63,36 @@ def detect_directory(model_path, weights_path, img_path, classes, output_path,
output_path,
conf_thres,
nms_thres,
robot_class_ids=robot_class_ids
class_config.get_group_config()
)
_draw_and_save_output_images(
img_detections, segmentations, imgs, img_size, output_path, classes)
img_detections, segmentations, imgs, img_size, output_path, class_config.get_ungrouped_det_class_names())

print(f"---- Detections were saved to: '{output_path}' ----")


def detect_image(model, image, img_size=416, conf_thres=0.5, nms_thres=0.5, robot_class_ids: Optional[List[int]] = None):
def detect_image(model,
image: np.ndarray,
img_size: int = 416,
conf_thres: float = 0.5,
nms_thres: float = 0.5,
group_config: Optional[GroupConfig] = None
):
"""Inferences one image with model.
:param model: Model for inference
:type model: models.Darknet
:param image: Image to inference
:type image: nd.array
:type image: np.ndarray
:param img_size: Size of each image dimension for yolo, defaults to 416
:type img_size: int, optional
:type img_size: int
:param conf_thres: Object confidence threshold, defaults to 0.5
:type conf_thres: float, optional
:type conf_thres: float
:param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
:type nms_thres: float, optional
:param robot_class_ids: List of class IDs of robot classes if multiple robot classes exist.
:type robot_class_ids: List[int], optional
:type nms_thres: float
:param group_config: GroupConfiguration for this model (optional, defaults to None)
:type group_config: Optional[GroupConfig]
:return: Detections on image with each detection in the format: [x1, y1, x2, y2, confidence, class], Segmentation as 2d numpy array with the coresponding class id in each cell
:rtype: nd.array, nd.array
"""
Expand All @@ -105,13 +112,24 @@ def detect_image(model, image, img_size=416, conf_thres=0.5, nms_thres=0.5, robo
# Get detections
with torch.no_grad():
detections, segmentations = model(input_img)
detections = non_max_suppression(detections, conf_thres, nms_thres, robot_class_ids=robot_class_ids)
detections = non_max_suppression(
prediction=detections,
conf_thres=conf_thres,
iou_thres=nms_thres,
group_config=group_config
)
detections = rescale_boxes(detections[0], img_size, image.shape[0:2])
segmentations = rescale_segmentation(segmentations, image.shape[0:2])
return detections.numpy(), segmentations.cpu().detach().numpy()


def detect(model, dataloader, output_path, conf_thres, nms_thres, robot_class_ids: Optional[List[int]] = None):
def detect(model,
dataloader: DataLoader,
output_path: str,
conf_thres: float = 0.5,
nms_thres: float = 0.5,
group_config: Optional[GroupConfig] = None
):
"""Inferences images with model.
:param model: Model for inference
Expand All @@ -121,11 +139,12 @@ def detect(model, dataloader, output_path, conf_thres, nms_thres, robot_class_id
:param output_path: Path to output directory
:type output_path: str
:param conf_thres: Object confidence threshold, defaults to 0.5
:type conf_thres: float, optional
:type conf_thres: float
:param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
:type nms_thres: float, optional
:param robot_class_ids: List of class IDs of robot classes if multiple robot classes exist.
:type robot_class_ids: List[int], optional
:type nms_thres: float
:param group_config: GroupConfig for this model (optional, defaults to None)
:type group_config: Optional[GroupConfig]
:return: List of detections. The coordinates are given for the padded image that is provided by the dataloader.
Use `utils.rescale_boxes` to transform them into the desired input image coordinate system before its transformed by the dataloader),
List of input image paths
Expand All @@ -149,7 +168,12 @@ def detect(model, dataloader, output_path, conf_thres, nms_thres, robot_class_id
# Get detections
with torch.no_grad():
detections, segmentations = model(input_imgs)
detections = non_max_suppression(detections, conf_thres, nms_thres, robot_class_ids=robot_class_ids)
detections = non_max_suppression(
prediction=detections,
conf_thres=conf_thres,
iou_thres=nms_thres,
group_config=group_config
)

# Store image and detections
img_detections.extend(detections)
Expand Down Expand Up @@ -310,33 +334,24 @@ def run():
parser.add_argument("--n_cpu", type=int, default=8, help="Number of cpu threads to use during batch generation")
parser.add_argument("--conf_thres", type=float, default=0.5, help="Object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.4, help="IOU threshold for non-maximum suppression")
parser.add_argument("--multiple_robot_classes", action="store_true",
help="If multiple robot classes exist and nms shall be performed across all robot classes")
parser.add_argument("--class_config", type=str, default="class_config/default.yaml", help="Class configuration for evaluation")
args = parser.parse_args()
print(f"Command line arguments: {args}")

# Extract class names from file
classes = load_classes(args.classes)['detection'] # List of class names

robot_class_ids = None
if args.multiple_robot_classes:
robot_class_ids = []
for idx, c in enumerate(classes):
if "robot" in c:
robot_class_ids.append(idx)
class_names = ClassNames.load_from(args.classes)
class_config = ClassConfig.load_from(args.class_config, class_names)

detect_directory(
args.model,
args.weights,
args.images,
classes,
class_config,
args.output,
batch_size=args.batch_size,
img_size=args.img_size,
n_cpu=args.n_cpu,
conf_thres=args.conf_thres,
nms_thres=args.nms_thres,
robot_class_ids=robot_class_ids
)


Expand Down
69 changes: 39 additions & 30 deletions yoeo/scripts/createYOEOLabelsFromTORSO-21.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,6 @@
from tqdm import tqdm


# Available classes for YOEO
CLASSES = {
'bb_classes': ['ball', 'goalpost', 'robot'],
'segmentation_classes': ['background', 'lines', 'field'],
'skip_classes': ['obstacle', 'L-Intersection', 'X-Intersection', 'T-Intersection']
}


def range_limited_float_type_0_to_1(arg):
"""Type function for argparse - a float within some predefined bounds
Derived from 'https://stackoverflow.com/questions/55324449/how-to-specify-a-minimum-or-maximum-float-value-with-argparse/55410582#55410582'.
Expand All @@ -37,8 +29,16 @@ def range_limited_float_type_0_to_1(arg):
parser.add_argument("--skip-blurred", action="store_true", help="Skip blurred labels")
parser.add_argument("--skip-concealed", action="store_true", help="Skip concealed labels")
parser.add_argument("--skip-classes", nargs="+", default=[], help="These bounding box classes will be skipped")
parser.add_argument("--robots-with-team-colors", action="store_true", help="The robot class will be subdivided into subclasses, one for each team color (currently either 'blue', 'red' or 'unknown').")
args = parser.parse_args()

# Available classes for YOEO
CLASSES = {
'bb_classes': ['ball', 'goalpost', 'robot'] if not args.robots_with_team_colors else ['ball', 'goalpost', 'robot_blue', 'robot_red', 'robot_unknown'],
'segmentation_classes': ['background', 'lines', 'field'],
'skip_classes': ['obstacle', 'L-Intersection', 'X-Intersection', 'T-Intersection'],
}

# Remove skipped classes from CLASSES list
for skip_class in args.skip_classes:
if skip_class in CLASSES['bb_classes']:
Expand Down Expand Up @@ -122,33 +122,42 @@ def range_limited_float_type_0_to_1(arg):
annotations = []

for annotation in image_data['annotations']:
# Skip annotations that are not in the image
if not annotation['in_image']:
continue

# Derive the class name of the current annotation
class_name = annotation['type']
if args.robots_with_team_colors and class_name == 'robot':
class_name += f"_{annotation['color']}"

# Skip annotations, if is not a bounding box or should be skipped or is blurred or concealed and user chooses to skip them
if (annotation['type'] in CLASSES['segmentation_classes'] or # Handled by segmentations
annotation['type'] in CLASSES['skip_classes'] or # Skip this annotation class
if (class_name in CLASSES['segmentation_classes'] or # Handled by segmentations
class_name in CLASSES['skip_classes'] or # Skip this annotation class
(args.skip_blurred and annotation.get('blurred', False)) or
(args.skip_concealed and annotation.get('concealed', False))):
continue
elif annotation['type'] in CLASSES['bb_classes']: # Handle bounding boxes
if annotation['in_image']: # If annotation is not in image, do nothing
min_x = min(map(lambda x: x[0], annotation['vector']))
max_x = max(map(lambda x: x[0], annotation['vector']))
min_y = min(map(lambda x: x[1], annotation['vector']))
max_y = max(map(lambda x: x[1], annotation['vector']))

annotation_width = max_x - min_x
annotation_height = max_y - min_y
relative_annotation_width = annotation_width / img_width
relative_annotation_height = annotation_height / img_height

center_x = min_x + (annotation_width / 2)
center_y = min_y + (annotation_height / 2)
relative_center_x = center_x / img_width
relative_center_y = center_y / img_height

classID = CLASSES['bb_classes'].index(annotation['type']) # Derive classID from index in predefined classes
annotations.append(f"{classID} {relative_center_x} {relative_center_y} {relative_annotation_width} {relative_annotation_height}")
elif class_name in CLASSES['bb_classes']: # Handle bounding boxes
min_x = min(map(lambda x: x[0], annotation['vector']))
max_x = max(map(lambda x: x[0], annotation['vector']))
min_y = min(map(lambda x: x[1], annotation['vector']))
max_y = max(map(lambda x: x[1], annotation['vector']))

annotation_width = max_x - min_x
annotation_height = max_y - min_y
relative_annotation_width = annotation_width / img_width
relative_annotation_height = annotation_height / img_height

center_x = min_x + (annotation_width / 2)
center_y = min_y + (annotation_height / 2)
relative_center_x = center_x / img_width
relative_center_y = center_y / img_height

# Derive classID from index in predefined classes
classID = CLASSES['bb_classes'].index(class_name)
annotations.append(f"{classID} {relative_center_x} {relative_center_y} {relative_annotation_width} {relative_annotation_height}")
else:
print(f"The annotation type '{annotation['type']}' is not supported. Image: '{img_name_with_extension}'")
print(f"The annotation type '{class_name}' is not supported. Image: '{img_name_with_extension}'")

# Store bounding box annotations in .txt file
with open(os.path.join(labels_dir, img_name_without_extension + ".txt"), "w") as output:
Expand Down
Loading

0 comments on commit a6c184c

Please sign in to comment.