Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add an argument to use only labeled data in training process. #7

Merged
merged 5 commits into from
Jul 14, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion lib/data_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ def get_simple_mixed_batch(
shuffle_buffer_size,
labeled_data_filter_fn=None,
unlabeled_data_filter_fn=None,
mode="mix",
):
"""A less flexible, more memory-efficient version of get_simple_mixed_batch.

Expand All @@ -53,6 +54,8 @@ def get_simple_mixed_batch(
key. Returns a boolean tensor. Defaults to no filter (all images).
unlabeled_data_filter_fn (function): Function to decide which unlabeled
data to look at. Same signature as labeled_data_filter.
mode (str): "labeled" - use only labeled data,
"mix" (default) - use mixed data

Returns:
A tuple (images, labels, batch_count, remainder, num_classes), where:
Expand Down Expand Up @@ -124,10 +127,13 @@ def get_simple_mixed_batch(

# These operations merge the datasets in a way that intersperses
# elements from each, rather than just concatenating them.
if labeled_dataset_name == "imagenet_32":
if labeled_dataset_name == "imagenet_32" or mode == "labeled":
# Don't waste batch space for imagenet pre-training.
dataset = labeled_dataset
elif mode == "unlabeled":
DoctorKey marked this conversation as resolved.
Show resolved Hide resolved
dataset = unlabeled_dataset
else:
assert mode == "mix"
dataset = dataset_utils.shuffle_merge(
DoctorKey marked this conversation as resolved.
Show resolved Hide resolved
labeled_dataset, unlabeled_dataset
)
Expand Down
2 changes: 1 addition & 1 deletion runs/figure-2-cifar10-4000-fullysup-olna.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ windows:
layout: even-vertical
shell_command_before: cd /root/realistic-ssl-evaluation
panes:
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='cifar10' --secondary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna --n_labeled=4000 --consistency_model=none --labeled_classes_filter=2,3,4,5,6,7 --unlabeled_classes_filter=0,1,8,9 2>&1 | tee /mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna_train.log
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='cifar10' --secondary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna --n_labeled=4000 --dataset_model=labeled --consistency_model=none --labeled_classes_filter=2,3,4,5,6,7 --unlabeled_classes_filter=0,1,8,9 2>&1 | tee /mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna_train.log
- CUDA_VISIBLE_DEVICES=1 python3 evaluate_model.py --split=test --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna --consistency_model=none --labeled_classes_filter=2,3,4,5,6,7 2>&1 | tee /mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna_eval_test.log
- CUDA_VISIBLE_DEVICES=2 python3 evaluate_model.py --split=valid --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna --consistency_model=none --labeled_classes_filter=2,3,4,5,6,7 2>&1 | tee /mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna_eval_valid.log
- CUDA_VISIBLE_DEVICES=3 python3 evaluate_model.py --split=train --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna --consistency_model=none --labeled_classes_filter=2,3,4,5,6,7 2>&1 | tee /mnt/experiment-logs/figure-2-cifar10-4000-fullysup-olna_eval_train.log
2 changes: 1 addition & 1 deletion runs/table-1-cifar10-4000-fullysup.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ windows:
layout: even-vertical
shell_command_before: cd /root/realistic-ssl-evaluation
panes:
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='cifar10' --secondary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/table-1-cifar10-4000-fullysup --n_labeled=4000 --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-cifar10-4000-fullysup_train.log
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='cifar10' --secondary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/table-1-cifar10-4000-fullysup --n_labeled=4000 --dataset_model=labeled --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-cifar10-4000-fullysup_train.log
- CUDA_VISIBLE_DEVICES=1 python3 evaluate_model.py --split=test --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/table-1-cifar10-4000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-cifar10-4000-fullysup_eval_test.log
- CUDA_VISIBLE_DEVICES=2 python3 evaluate_model.py --split=valid --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/table-1-cifar10-4000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-cifar10-4000-fullysup_eval_valid.log
- CUDA_VISIBLE_DEVICES=3 python3 evaluate_model.py --split=train --verbosity=0 --primary_dataset_name='cifar10' --root_dir=/mnt/experiment-logs/table-1-cifar10-4000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-cifar10-4000-fullysup_eval_train.log
2 changes: 1 addition & 1 deletion runs/table-1-svhn-1000-fullysup.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ windows:
layout: even-vertical
shell_command_before: cd /root/realistic-ssl-evaluation
panes:
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='svhn' --secondary_dataset_name='svhn' --root_dir=/mnt/experiment-logs/table-1-svhn-1000-fullysup --n_labeled=1000 --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-svhn-1000-fullysup_train.log
- CUDA_VISIBLE_DEVICES=0 python3 train_model.py --verbosity=0 --primary_dataset_name='svhn' --secondary_dataset_name='svhn' --root_dir=/mnt/experiment-logs/table-1-svhn-1000-fullysup --n_labeled=1000 --dataset_model=labeled --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-svhn-1000-fullysup_train.log
- CUDA_VISIBLE_DEVICES=1 python3 evaluate_model.py --split=test --verbosity=0 --primary_dataset_name='svhn' --root_dir=/mnt/experiment-logs/table-1-svhn-1000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-svhn-1000-fullysup_eval_test.log
- CUDA_VISIBLE_DEVICES=2 python3 evaluate_model.py --split=valid --verbosity=0 --primary_dataset_name='svhn' --root_dir=/mnt/experiment-logs/table-1-svhn-1000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-svhn-1000-fullysup_eval_valid.log
- CUDA_VISIBLE_DEVICES=3 python3 evaluate_model.py --split=train --verbosity=0 --primary_dataset_name='svhn' --root_dir=/mnt/experiment-logs/table-1-svhn-1000-fullysup --consistency_model=none 2>&1 | tee /mnt/experiment-logs/table-1-svhn-1000-fullysup_eval_train.log
7 changes: 7 additions & 0 deletions train_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,12 @@
"datasets being used as unlabeled data. Defaults to all "
"classes.",
)
flags.DEFINE_string(
"dataset_mode",
"mix",
"'labeled' - use only labeled data to train the model. "
"'mix' (default) - use mixed data to train the model",
)

# Flags for book-keeping
flags.DEFINE_string(
Expand Down Expand Up @@ -154,6 +160,7 @@ def train(hps, result_dir, tuner=None, trial_name=None):
shuffle_buffer_size=1000,
labeled_data_filter_fn=labeled_data_filter_fn,
unlabeled_data_filter_fn=unlabeled_data_filter_fn,
mode=FLAGS.dataset_mode,
)

logging.info("Training data tensors constructed.")
Expand Down