Skip to content

An attempt to train a Tensorflow convnet to provide machine guided image aesthetics

License

Notifications You must be signed in to change notification settings

bretttully/image-aesthetics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Getting up and running with TensorFlow

Installation

sudo apt install nvidia-cuda-toolkit
  • Get cuDNN v4 from https://developer.nvidia.com/cudnn -- this will require signing up to the developer program. Use locate cuda.h and locate libcuda.so to find the right place to copy these. The following works on Ubuntu 16.04.
tar xvzf cudnn-7.*
sudo cp cuda/include/cudnn.h /usr/include/cuda
sudo cp cuda/lib64/libcudnn* /usr/lib/x86_64-linux-gnu/
sudo chmod a+r /usr/include/cudnn.h /usr/lib/x86_64-linux-gnu/libcudnn*
  • Install using conda
conda create -n tensorflow-gpu python=3.5 anaconda
source activate tensorflow-gpu
pip install jupyter pandas tables matplotlib
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl
pip install --ignore-installed --upgrade ${TF_BINARY_URL}
  • Test that the install has been successful
python -c "import tensorflow"
  • Install bazel: see here
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add -
sudo apt update
sudo apt install bazel swig

About

An attempt to train a Tensorflow convnet to provide machine guided image aesthetics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published