-
Notifications
You must be signed in to change notification settings - Fork 0
zr_laser_bias_current_test
Validate 400ZR optics modules report accurate laser bias current telemetry values.
As per CMIS:
Measured Tx laser bias current is represented as a 16-bit unsigned integer with the current defined as the 12 full 16-bit value (0 to 65535) with LSB equal to 2 uA times the multiplier from Byte 01h:160. For a multiplier of 13 1, this yields a total measurement range of 0 to 131 mA.
Accuracy must be better than +/-10% of the manufacturer's nominal value over specified operating temperature and voltage.
-
Connect two ZR interfaces using a duplex LC fiber jumper such that TX output power of one is the RX input power of the other module. Connection between the modules should pass through an optical switch that can be controlled through automation to simulate a fiber cut as needed.
-
To establish a point to point ZR link ensure the following:
- Both transceivers states are enabled
- Both transceivers are set to a valid target TX output power example -9 dBm
- Both transceivers are tuned to a valid centre frequency example 193.1 THz
-
With the ZR link is established as explained above, verify that the following ZR transceiver telemetry paths exist and are streamed for both the ZR optics
- /components/component/optical-channel/state/laser-bias-current/instant
- /components/component/optical-channel/state/laser-bias-current/avg
- /components/component/optical-channel/state/laser-bias-current/min
- /components/component/optical-channel/state/laser-bias-current/max
-
When the modules or the devices are still in a boot stage, they must not stream any invalid string values like "nil" or "-inf".
-
Laser bias current values must always be of type decimal64. When laser is in off state 0 must be reported as a valid value.
Note: For min, max, and avg values, 10 second sampling is preferred. If the min, max average values or the 10 seconds sampling is not supported, the sampling interval used must be specified and this must be captured by adding a deviation to the test.
-
Verify that the TX laser bias current is updated after an interface enable / disable state change.
- Enable a pair of ZR interfaces on the DUT as explained above.
- Verify the ZR optics TX laser bias current telemetry values are in the normal range.
- Use /interfaces/interface/config/enabled to disable the interfaces so that the TX laser is squelched / turned off.
- Verify with interface state disabled and link down, decimal64 0 value is streamed for both optics TX laser bias current.
- Re-enable the optics using /interfaces/interface/config/enabled.
- Verify the ZR optics TX laser bias current telemetry values are
updated to the value in the normal range again.
- Typical measurement range 0 to 131 mA.
-
Verify that the TX laser bias current is updated after transceiver power ON / OFF state change.
- Enable a pair of ZR interfaces on the DUT as explained above.
- Verify the ZR optics TX laser bias current telemetry values are in the normal range.
- Use /components/component/transceiver/config/enabled to power off the transceiver so that the TX laser is squelched / turned off.
- Verify with transceiver state disabled and link down, no value is streamed for both optics TX laser bias current.
- Re-enable the optics using /components/component/transceiver/config/enabled.
- Verify the ZR optics TX laser bias current telemetry values are
updated to the value in the normal range again.
- Typical measurement range 0 to 131 mA.
The below yaml defines the OC paths intended to be covered by this test. OC paths used for test setup are not listed here.
paths:
## Config Paths ##
/components/component/transceiver/config/enabled:
platform_type: [ "OPTICAL_CHANNEL" ]
/interfaces/interface/config/enabled:
## State Paths ##
/components/component/optical-channel/state/laser-bias-current/instant:
platform_type: [ "OPTICAL_CHANNEL" ]
/components/component/optical-channel/state/laser-bias-current/avg:
platform_type: [ "OPTICAL_CHANNEL" ]
/components/component/optical-channel/state/laser-bias-current/min:
platform_type: [ "OPTICAL_CHANNEL" ]
/components/component/optical-channel/state/laser-bias-current/max:
platform_type: [ "OPTICAL_CHANNEL" ]
rpcs:
gnmi:
gNMI.Subscribe:
-
Home
- Test Plans
- Authz: General Authz (1-4) tests
- CNTR-2: Container network connectivity tests
- DP-1.2: QoS policy feature config
- DP-1.3: QoS ECN feature config
- DP-1.4: QoS Interface Output Queue Counters
- DP-1.7: One strict priority queue traffic test
- DP-1.8: Two strict priority queue traffic test
- DP-1.9: WRR traffic test
- DP-1.10: Mixed strict priority and WRR traffic test
- DP-1.11: Bursty traffic test
- DP-1.14: QoS basic test
- example-0.1: Topology Test
- FP-1.1: Power admin DOWN/UP Test
- gNMI-1.1: cli Origin
- gNMI-1.2: Benchmarking: Full Configuration Replace
- gNMI-1.3: Benchmarking: Drained Configuration Convergence Time
- gNMI-1.4: Telemetry: Inventory
- gNMI-1.5: Telemetry: Port Speed Test
- gNMI-1.8: Configuration Metadata-only Retrieve and Replace
- gNMI-1.9: Get requests
- gNMI-1.10: Telemetry: Basic Check
- gNMI-1.11: Telemetry: Interface Packet Counters
- gNMI-1.12: Mixed OpenConfig/CLI Origin
- gNMI-1.13: Optics Telemetry, Instant, threshold, and miscellaneous static info
- gNMI-1.14: OpenConfig metadata consistency during large config push
- gNMI-1.15: Set Requests
- gNMI-1.16: fabric redundancy test
- gNMI-1.17: Controller Card redundancy test
- gNMI-1.18: gNMI subscribe with sample mode for backplane capacity counters
- gNMI-1.19: ConfigPush after Control Card switchover
- gNMI-1.20: Telemetry: Optics Thresholds
- gNMI-1.21: Integrated Circuit Hardware Resource Utilization Test
- gNMI-1.22: Controller card port attributes
- gNMI-1.27: gNMI Sample Mode Test
- gNOI-2.1: Packet-based Link Qualification
- gNOI-3.1: Complete Chassis Reboot
- gNOI-3.2: Per-Component Reboot
- gNOI-3.3: Supervisor Switchover
- gNOI-3.4: Chassis Reboot Status and Reboot Cancellation
- gNOI-4.1: Software Upgrade
- gNOI-5.1: Ping Test
- gNOI-5.2: Traceroute Test
- gNOI-5.3: Copying Debug Files
- gNOI-6.1: Factory Reset
- Health-1.1: Generic Health Check
- Health-1.2: Healthz component status paths
- MGT-1: Management HA solution test
- MTU-1.3: Large IP Packet Transmission
- OC-1.2: Default Address Families
- OC-26.1: Network Time Protocol (NTP)
- P4RT-1.1: Base P4RT Functionality
- P4RT-1.2: P4RT Daemon Failure
- P4RT-2.1: P4RT Election
- P4RT-2.2: P4RT Metadata Validation
- P4RT-3.1: Google Discovery Protocol: PacketIn
- P4RT-3.2: Google Discovery Protocol: PacketOut
- P4RT-5.1: Traceroute: PacketIn
- P4RT-5.2: Traceroute Packetout
- P4RT-6.1: Required Packet I/O rate: Performance
- P4RT-7.1: LLDP: PacketIn
- P4RT-7.2: LLDP: PacketOut
- Replay-1.0: Record/replay presession test
- Replay-1.1: Record/replay diff command trees test
- Replay-1.2: P4RT Replay Test
- RT-1.1: Base BGP Session Parameters
- RT-1.2: BGP Policy & Route Installation
- RT-1.3: BGP Route Propagation
- RT-1.4: BGP Graceful Restart
- RT-1.5: BGP Prefix Limit
- RT-1.7: Local BGP Test
- RT-1.10: BGP Keepalive and HoldTimer Configuration Test
- RT-1.11: BGP remove private AS
- RT-1.12: BGP always compare MED
- RT-1.14: BGP Long-Lived Graceful Restart
- RT-1.19: BGP 2-Byte and 4-Byte ASN support
- RT-1.21: BGP TCP MSS and PMTUD
- RT-1.23: BGP AFI SAFI OC DEFAULTS
- RT-1.24: BGP 2-Byte and 4-Byte ASN support with policy
- RT-1.25: Management network-instance default static route
- RT-1.26: Basic static route support
- RT-1.27: Static route to BGP redistribution
- RT-1.28: BGP to IS-IS redistribution
- RT-1.29: BGP chained import/export policy attachment
- RT-1.30: BGP nested import/export policy attachment
- RT-1.32: BGP policy actions - MED, LocPref, prepend, flow-control
- RT-1.33: BGP Policy with prefix-set matching
- RT-1.51: BGP multipath ECMP
- RT-1.52: BGP multipath UCMP support with Link Bandwidth Community
- RT-2.1: Base IS-IS Process and Adjacencies
- RT-2.2: IS-IS LSP Updates
- RT-2.6: IS-IS Hello-Padding enabled at interface level
- RT-2.7: IS-IS Passive is enabled at interface level
- RT-2.8: IS-IS metric style wide not enabled
- RT-2.9: IS-IS metric style wide enabled
- RT-2.10: IS-IS change LSP lifetime
- RT-2.11: IS-IS Passive is enabled at the area level
- RT-2.12: Static route to IS-IS redistribution
- RT-2.13: Weighted-ECMP for IS-IS
- RT-2.14: IS-IS Drain Test
- RT-3.1: Policy based VRF selection
- RT-3.2: Multiple <Protocol, DSCP> Rules for VRF Selection
- RT-4.10: AFTs Route Summary
- RT-5.1: Singleton Interface
- RT-5.2: Aggregate Interfaces
- RT-5.3: Aggregate Balancing
- RT-5.4: Aggregate Forwarding Viable
- RT-5.5: Interface hold-time
- RT-5.6: Interface Loopback mode
- RT-5.8: IPv6 Link Local
- RT-5.9: Disable IPv6 ND Router Arvetisment
- RT-5.10: IPv6 Link Local generated by SLAAC
- RT-6.1: Core LLDP TLV Population
- RT-7.1: BGP default policies
- RT-7.2: BGP Policy Community Set
- RT-7.3: BGP Policy AS Path Set
- RT-7.4: BGP Policy AS Path Set and Community Set
- RT-7.5: BGP Policy - Match and Set Link Bandwidth Community
- RT-7.8: BGP Policy Match Standard Community and Add Community Import/Export Policy
- RT-7.11: BGP Policy - Import/Export Policy Action Using Multiple Criteria
- SEC-3.1: Authentication
- SFLOW-1: sFlow Configuration and Sampling
- System-1: System testing
- TE-1.1: Static ARP
- TE-1.2: My Station MAC
- TE-2.1: gRIBI IPv4 Entry
- TE-2.2: gRIBI IPv4 Entry With Aggregate Ports
- TE-3.1: Base Hierarchical Route Installation
- TE-3.2: Traffic Balancing According to Weights
- TE-3.3: Hierarchical weight resolution
- TE-3.5: Ordering: ACK Received
- TE-3.6: ACK in the Presence of Other Routes
- TE-3.7: Base Hierarchical NHG Update
- TE-3.31: Hierarchical weight resolution with PBF
- TE-4.1: Base Leader Election
- TE-4.2: Persistence Mode
- TE-5.1: gRIBI Get RPC
- TE-6.1: Route Removal via Flush
- TE-6.2: Route Removal In Non Default VRF
- TE-8.1: DUT Daemon Failure
- TE-8.2: Supervisor Failure
- TE-9.1: FIB FAILURE DUE TO HARDWARE RESOURCE EXHAUST
- TE-9.2: MPLS based forwarding Static LSP
- TE-9: gRIBI MPLS Compliance
- TE-10: gRIBI MPLS Forwarding
- TE-11.1: Backup NHG: Single NH
- TE-11.2: Backup NHG: Multiple NH
- TE-11.3: Backup NHG: Actions
- TE-11.21: Backup NHG: Multiple NH with PBF
- TE-11.31: Backup NHG: Actions with PBF
- TE-13.1: gRIBI route ADD during Failover
- TE-13.2: gRIBI route DELETE during Failover
- TE-14.1: gRIBI Scaling
- TE-14.2: encap and decap scale
- TE-15.1: gRIBI Compliance
- TE-16.1: basic encapsulation tests
- TE-16.2: encapsulation FRR scenarios
- TE-17.1: VRF selection policy driven TE
- TR-6.1: Remote Syslog feature config
- TRANSCEIVER-1: Telemetry: 400ZR Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-3: Telemetry: 400ZR Optics firmware version streaming
- TRANSCEIVER-4: Telemetry: 400ZR RX input and TX output power telemetry values streaming.
- TRANSCEIVER-5: Configuration: 400ZR channel frequency, output TX launch power and operational mode setting.
- TRANSCEIVER-6: Telemetry: 400ZR Optics performance metrics (pm) streaming.
- TRANSCEIVER-7: Telemetry: 400ZR Optics inventory info streaming
- TRANSCEIVER-8: Telemetry: 400ZR Optics module temperature streaming.
- TRANSCEIVER-9: Telemetry: 400ZR TX laser bias current telemetry values streaming.
- TRANSCEIVER-10: Telemetry: 400ZR Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-11: Telemetry: 400ZR Optics logical channels provisioning and related telemetry.
- TRANSCEIVER-12: Telemetry: 400ZR Transceiver Supply Voltage streaming.
- TRANSCEIVER-13: Configuration: 400ZR Transceiver Low Power Mode Setting.
- TUN-1.4: Interface based IPv6 GRE Encapsulation
- TUN-1.9: GRE inner packet DSCP
- Test Plans