Skip to content

carschno/module_classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

module-classifier

This is a Python application for a module (topic/category) classifier for The Syllabus.

Module Classification

Usage

To predict the module(s) for a text, use the ModuleClassifier.predict_text() method:

from module_classifier.classification.module_classifier import ModuleClassifier

classifier = ModuleClassifier() # use the default model on disk

# Or download the model from S3 and use it (uses local copy if already present):
classifier = ModuleClassifier.from_s3()

# Alternatively, specify a custom model file:
classifier = ModuleClassifier(model_path=model_file_path)

classifier.predict_text("This text is about automation and AI", k=3)

[Prediction(module=Module(section=6, module=8), prob=1.0000072),
 Prediction(module=Module(section=6, module=2), prob=1.12474345e-05),
 Prediction(module=Module(section=6, module=9), prob=1.099022e-05)]

The method returns a list of Prediction objects of length k. Each of them compises comprises a Module object and the respective model confidence.

The function parameter k determines the number of results. If k is set to 1 (default), only the most probable module is returned.

The predict_row() method expects a row from a CSV file in the form of a dictionary as input. It extracts the text fields and returns the same output format.

Main Edition Classifier

The Main Edition Classifier is a binary classifier that estimates whether an item is suitable for the main edition. It returns a single prediction, either True or False, along with a probability score.

Usage

Usage is essentially the same as for the module classifier above:

from module_classifier.classification.binary_classifier import MainEditionClassifier

c = MainEditionClassifier.from_s3()

classifier.predict_text("This text is about automation and AI")

The classifier also implements the same additional methods, such as predict_row() and predict_texts().

Explanation

Command Line Tool

The built-in script explain generates a simplified visualization of the words that contributed to the classifier's decision. Run it from the command line for instance like this:

explain -i <input.txt> -o <output.html> -k 3

The <input.txt> file is a file containing a single text to be explained. The <output.html> file is the output file to which the output is written in HTML format. The -k parameter determines the number of labels to be explained (defaults to 1, ie. explain only the highest scoring label).

Optionally, you can specify a custom model file with the --model-file parameter:

explain -i <input.txt> -o <output.html> --model-file <my_model_file>

Run explain --help for a full list of parameters.

Python Interface

The module module_classifier.explaination.explainer.Explainer provides a Python class for explainations. It is initialized with a Classifier object:

from module_classifier.classification import Classifier
from module_classifier.explain import Explainer

classifier = Classifier()
explainer = Explainer(classifier)

explainer.explain("text to explain", k=3)

The explain() method returns an Explanation object. See the Lime documentation for available methods.

Train a New Model

Command Line Tool

To train a new model, either use the train_module_classifier script like this:

train_module_classifier --input data.csv --output model.bin --text-fields abstract description --class-field module_id_for_all

The --text-field arguments define the columns from the input CSV file that contain the texts to use for classification. The --class-field argument defines the column in the input CSV file that contains the module ID.

Run train_module_classifier --help to get more detailed instructions.

Python

from module_classifier.training import Trainer

input_csv = "/path/to/training_data.csv"
model_file = "/path/to/model"
text_fields=("item_title","authors","publication_name","abstract_description")

trainer = Trainer()
trainer.train_model(input_csv, target_file=model_file, text_fields=text_fields)

The output should look like this:

Read 4M words
Number of words:  157148
Number of labels: 86
Progress: 100.0% words/sec/thread:  243635 lr:  0.000000 avg.loss:  1.353899 ETA:   0h 0m 0s

Mind that the text_fields should correspond to what is defined in the input CSV file. The contents of these fields are extracted to generate the training data.

The class_field argument specifies the column which contains the assigned module labels for each row in the input CSV file. It defaults to module_id_for_all.

The training time varies greatly, depending on the input data size, and the number and speed of CPUs. It can take between a few minutes and hours.

Once done, the model can be used in the module_classifier_api:

from module_classifier.classification import Classifier

c = Classifier(model_file)  # model_file generated above

Training effects

The training can be done in order to improve the model with added or updated training data. However, this needs to be handled with care. Re-training the model with all new training data might look tempting, but can result in a model that overfits to the new training data.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages