Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Single value group 51 #52

Merged
merged 3 commits into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
* `simulated.tidyvpcobj()` detects if the number of simulated rows is not an integer multiple of the number of observed rows and adds the new `xsim` argument to test that x values match between replicated simulations. It will suggest that MDV filtering may not have occurred if either of these fails [#35](https://github.com/certara/tidyvpc/issues/35).
* Prevent division by zero in `predcorrect()` transformation [#31](https://github.com/certara/tidyvpc/issues/31).
* Usability enhancements for prediction corrected VPC (pcVPC), which include support for `binning.tidyvpcobj()` either before or after usage of `predcorrect.tidyvpcobj()`, and automatically performing LOESS pcVPC when `binless.tidyvpcobj()` is used. As a result, the `loess.ypc` argument is no longer required[#43](https://github.com/certara/tidyvpc/issues/43).
* VPC can work with a single value in a group [#51](https://github.com/certara/tidyvpc/issues/51)

# tidyvpc 1.4.0
* Fix for npde calculation fix npde calc [#16](https://github.com/certara/tidyvpc/pull/16)
Expand Down
59 changes: 32 additions & 27 deletions R/vpcstats.R
Original file line number Diff line number Diff line change
Expand Up @@ -525,7 +525,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
stop("Invalid xbin")
}
vpc.method <- list(method = "binning")

# check if user supplied predcorrect before binning
if (!is.null(o$predcor) && o$predcor) {
pred <- o$pred
Expand All @@ -540,7 +540,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
o$sim[, ypc := ifelse(rep(pred, times = nrow(o$sim) / nrow(o$obs)) == 0, 0, (mpred / pred) * y)]
}
}

update(o, xbin=xbin, vpc.method = vpc.method)
}

Expand Down Expand Up @@ -606,13 +606,13 @@ predcorrect.tidyvpcobj <- function(o, pred, data=o$data, ..., log=FALSE) {

stratbin <- o$.stratbin
# predcorrect after binning, check if binning/binless has already been specified

if (!is.null(o$vpc.method)) {
if(o$vpc.method$method == "binless") {
o$vpc.method$loess.ypc <- TRUE
} else { #binning specified, perform ypc calculcation
mpred <- data.table(stratbin, pred)[, mpred := median(pred), by = stratbin]$mpred

if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
Expand Down Expand Up @@ -858,32 +858,37 @@ bin_by_classInt <- function(style, nbins=NULL) {
nbins <- .check_nbins(nbins)
}
function(x, ...) {
args <- list(var=x, style=style)
if (!is.null(nbins)) {
nbins <- .resolve_nbins(nbins, ...)
args$n <- nbins
}
args <- c(args, list(...))
if (style %in% c("kmeans", "hclust", "dpih")) {
# These don't accept '...' arguments
args1 <- args[intersect(names(args), methods::formalArgs(classInt::classIntervals))]
args2 <- if (style == "kmeans") {
args[intersect(names(args), methods::formalArgs(stats::kmeans))]
} else if (style == "hclust") {
args[intersect(names(args), methods::formalArgs(stats::hclust))]
} else if (style == "dpih") {
has_KernSmooth <- requireNamespace("KernSmooth", quietly=TRUE)
if (!has_KernSmooth) {
stop("Package 'KernSmooth' is required to use the binning method. Please install it.")
if (length(unique(x)) > 1) {
args <- list(var=x, style=style)
if (!is.null(nbins)) {
nbins <- .resolve_nbins(nbins, ...)
args$n <- nbins
}
args <- c(args, list(...))
if (style %in% c("kmeans", "hclust", "dpih")) {
# These don't accept '...' arguments
args1 <- args[intersect(names(args), methods::formalArgs(classInt::classIntervals))]
args2 <- if (style == "kmeans") {
args[intersect(names(args), methods::formalArgs(stats::kmeans))]
} else if (style == "hclust") {
args[intersect(names(args), methods::formalArgs(stats::hclust))]
} else if (style == "dpih") {
has_KernSmooth <- requireNamespace("KernSmooth", quietly=TRUE)
if (!has_KernSmooth) {
stop("Package 'KernSmooth' is required to use the binning method. Please install it.")
}
args[intersect(names(args), methods::formalArgs(KernSmooth::dpih))]
} else {
list()
}
args[intersect(names(args), methods::formalArgs(KernSmooth::dpih))]
} else {
list()
args <- c(args1, args2)
}
args <- c(args1, args2)
args <- args[!duplicated(args)]
breaks <- do.call(classInt::classIntervals, args)$brks
} else {
# If a group has a single value, `classInt::classIntervals` gives an error
breaks <- rep(1, length(x))
}
args <- args[!duplicated(args)]
breaks <- do.call(classInt::classIntervals, args)$brks
cut_at(breaks)(x)
}
}
Expand Down
106 changes: 62 additions & 44 deletions tests/testthat/test-binning.R
Original file line number Diff line number Diff line change
@@ -1,46 +1,46 @@
test_that("obs bins equal stats bins", {
obs_data <- as.data.table(tidyvpc::obs_data)
sim_data <- as.data.table(tidyvpc::sim_data)

## Subest MDV = 0
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]

unique_bins_obs <- as.factor(unique(obs_data$NTIME))
#Assign observed and simulated data to tidyvpc object
vpc <- observed(obs_data, x = TIME, y = DV )

vpc <- simulated(vpc, sim_data, y = DV)

vpc <- binning(vpc, bin = NTIME)

vpc <- vpcstats(vpc)

unique_bins_vpc <- unique(vpc$stats$bin)

#Check that bins match for binning on xvar NTIME
expect_equal(unique_bins_obs, unique_bins_vpc)

})


test_that("cat obs vpcstats is correct", {
obs_cat_data <- as.data.table(tidyvpc::obs_cat_data)
sim_cat_data <- as.data.table(tidyvpc::sim_cat_data)

vpc <- observed(obs_cat_data, x = agemonths, y = zlencat )
vpc <- simulated(vpc, sim_cat_data, y = DV)
vpc <- binning(vpc, bin = round(agemonths, 0))
vpc <- vpcstats(vpc, vpc.type = "categorical")

location <- system.file("extdata/Binning","cat_stats.csv",package="tidyvpc")

stats <- fread(location, colClasses = c(pname = "factor"))
stats$bin <- as.factor(stats$bin)

setkeyv(stats, c("xbin"))


#Check for equality, dispatches to data.table::all.equal method
expect_identical(all.equal(vpc$stats, stats), TRUE)

Expand All @@ -51,129 +51,147 @@ test_that("cat obs vpcstats is correct", {
test_that("cat obs strat vpcstats is correct", {
obs_cat_data <- as.data.table(tidyvpc::obs_cat_data)
sim_cat_data <- as.data.table(tidyvpc::sim_cat_data)

vpc <- observed(obs_cat_data, x = agemonths, y = zlencat )
vpc <- simulated(vpc, sim_cat_data, y = DV)
vpc <- stratify(vpc, ~ Country_ID_code)
vpc <- binning(vpc, bin = round(agemonths, 0))
vpc <- vpcstats(vpc, vpc.type = "categorical")

location <- system.file("extdata/Binning","cat_strat_stats.csv",package="tidyvpc")

stats <- fread(location, colClasses = c(pname = "factor"))
stats$bin <- as.factor(stats$bin)

setkeyv(stats, c(names(vpc$strat), "xbin"))


#Check for equality, dispatches to data.table::all.equal method
expect_identical(all.equal(vpc$stats, stats), TRUE)

})

test_that("binning methods are valid", {

## Subest MDV = 0
obs <- obs_data[MDV == 0]
sim <- sim_data[MDV == 0]

vpc <- observed(obs, x = TIME, y = DV )
vpc <- simulated(vpc, sim, y = DV)

centers <- c(0,1,5,8,12)
vpc <- binning(vpc, bin = "centers", centers = centers)
expect_equal(vpc$xbin$bin, as.factor(centers))

vpc <- binning(vpc, bin = "breaks", breaks = c(1,3,6,9,11))
expect_true(length(levels(vpc$xbin$bin)) == 11)

vpc <- binning(vpc, bin = "breaks", breaks = c(1,3,6,9,11))
expect_true(length(levels(vpc$xbin$bin)) == 11)

vpc <- binning(vpc, bin = "pam", nbins = 6)
expect_true(max(vpc$xbin$xbin) < 12)

vpc <- binning(vpc, bin = "ntile", nbins = 6)
expect_true(nrow(vpc$xbin) == 6)

vpc <- binning(vpc, bin = "eqcut", nbins = 12)
expect_true(nrow(vpc$xbin) == 12)

vpc <- binning(vpc, bin = "sd", nbins = 4)
expect_true(nrow(vpc$xbin) == 6)

})


test_that("binning by stratum works", {
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
obs_data$PRED <- sim_data[REP == 1, PRED]

vpc <- observed(obs_data, x=TIME, y=DV)
vpc <- simulated(vpc, sim_data, y=DV)
vpc <- stratify(vpc, ~ GENDER + STUDY)
vpc <- stratify(vpc, ~ GENDER + STUDY)
vpc <- binning(vpc, stratum = list(GENDER = "M", STUDY = "Study A"), bin = "jenks", nbins = 5, by.strata = T)
vpc <- binning(vpc, stratum = list(GENDER = "F", STUDY = "Study A"), bin = "centers", centers = c(0.5,3,5,10,15), by.strata = T)
vpc <- binning(vpc, stratum = list(GENDER = "M", STUDY = "Study B"), bin = "kmeans", by.strata = T)
vpc <- binning(vpc, stratum = list(GENDER = "F", STUDY = "Study B"), bin = "pam", nbins = 5, by.strata = T)
vpc <- predcorrect(vpc, pred=PRED)
vpc <- predcorrect(vpc, pred=PRED)
vpc <- vpcstats(vpc)

expect_true(inherits(vpc, "tidyvpcobj") && vpc$bin.by.strata)

})


test_that("binning errors are valid", {

obs <- obs_data[MDV == 0]
sim <- sim_data[MDV == 0]

vpc <- observed(obs, x = TIME, y = DV )
vpc <- simulated(vpc, sim, y = DV)
expect_true(inherits(binning(vpc, xbin = NTIME), "tidyvpcobj"))
expect_error(binning(vpc, xbin = c(1:5)))

})

test_that("binning can be used after predcorrect", {
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
obs_data$PRED <- sim_data[REP == 1, PRED]

vpc <- observed(obs_data, x = TIME, y = DV )
vpc <- simulated(vpc, sim_data, y = DV)
vpc <- stratify(vpc, ~ GENDER)
vpc <- predcorrect(vpc, pred = PRED)
vpc <- binning(vpc, bin = NTIME)
vpc <- vpcstats(vpc)

location <- system.file("extdata/Binning","predcor_strat_stats.csv",package="tidyvpc")
stats <- fread(location, colClasses = c(qname = "factor"))
stats[, bin := factor(bin, levels = levels(vpc$stats$bin))]
setkeyv(stats, c(names(vpc$strat), "xbin"))

expect_equal(vpc$stats, stats)
})

test_that("binning can be used before predcorrect", {
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
obs_data$PRED <- sim_data[REP == 1, PRED]

vpc <- observed(obs_data, x = TIME, y = DV )
vpc <- simulated(vpc, sim_data, y = DV)
vpc <- stratify(vpc, ~ GENDER)
vpc <- binning(vpc, bin = NTIME)
vpc <- predcorrect(vpc, pred = PRED)
vpc <- vpcstats(vpc)

location <- system.file("extdata/Binning","predcor_strat_stats.csv",package="tidyvpc")
stats <- fread(location, colClasses = c(qname = "factor"))
stats[, bin := factor(bin, levels = levels(vpc$stats$bin))]
setkeyv(stats, c(names(vpc$strat), "xbin"))

expect_equal(vpc$stats, stats)
})


test_that("binning works with single-value groups (#51)", {
d_obs <-
data.frame(
group = rep(c("Patient", "Healthy"), each = 5),
conc = c(rep(0, 5), 1:5),
value = 1:10
)

d_sim <-
d_obs[rep(1:nrow(d_obs), 5), ]

value <-
observed(d_obs, x = conc, yobs = value) %>%
simulated(d_sim, xsim = conc, ysim = value) %>%
stratify(~group) %>%
binning(bin = "jenks")
expect_s3_class(value, "tidyvpcobj")
})