Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Plot single value group #53

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
* `simulated.tidyvpcobj()` detects if the number of simulated rows is not an integer multiple of the number of observed rows and adds the new `xsim` argument to test that x values match between replicated simulations. It will suggest that MDV filtering may not have occurred if either of these fails [#35](https://github.com/certara/tidyvpc/issues/35).
* Prevent division by zero in `predcorrect()` transformation [#31](https://github.com/certara/tidyvpc/issues/31).
* Usability enhancements for prediction corrected VPC (pcVPC), which include support for `binning.tidyvpcobj()` either before or after usage of `predcorrect.tidyvpcobj()`, and automatically performing LOESS pcVPC when `binless.tidyvpcobj()` is used. As a result, the `loess.ypc` argument is no longer required[#43](https://github.com/certara/tidyvpc/issues/43).
* VPC can work with a single value in a group [#51](https://github.com/certara/tidyvpc/issues/51)

# tidyvpc 1.4.0
* Fix for npde calculation fix npde calc [#16](https://github.com/certara/tidyvpc/pull/16)
Expand Down
99 changes: 66 additions & 33 deletions R/plot.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
#' are \code{"free", "fixed"}.
#' @param custom.theme A custom ggplot2 theme supplied either as a character string, function, or object of class \code{"theme"}.
#' @param censoring.type A character string specifying additional blq/alq plots to include. Only applicable if
#' \code{\link{censoring}} was performed.
#' \code{\link{censoring}} was performed.
#' @param censoring.output A character string specifying whether to return percentage of blq/alq plots as an
#' arranged \code{"grid"} or as elements in a \code{"list"}. Only applicable if \code{censoring.type != "none"}.
#' @param ... Additional arguments for \code{\link[egg]{ggarrange}} e.g., \code{ncol} and \code{nrow}.
Expand All @@ -50,7 +50,7 @@ plot.tidyvpcobj <- function(x,
ribbon.alpha = 0.1,
legend.position="top",
facet.scales="free",
custom.theme = NULL,
custom.theme = NULL,
censoring.type = c("none", "both", "blq", "alq"),
censoring.output = c("grid", "list"),
...) {
Expand Down Expand Up @@ -91,7 +91,7 @@ plot.tidyvpcobj <- function(x,
point.stroke,
point.alpha
)


}

Expand All @@ -105,7 +105,7 @@ plot.tidyvpcobj <- function(x,
} else if (inherits(custom.theme, "theme")) {
g <- g + custom.theme
}

# add labels
if (is.null(xlab)) {
xlab <- "TIME"
Expand All @@ -121,19 +121,19 @@ plot.tidyvpcobj <- function(x,
paste0(ylab, "\nPrediction Corrected"))
}
}

g <- g + ggplot2::xlab(xlab)
g <- g + ggplot2::ylab(ylab)


# blq/alq plot
censoring.type <- match.arg(censoring.type)
censoring.output <- match.arg(censoring.output)
grid_args <- as.list(substitute(list(...)))

if (vpc_type == "continuous" && censoring.type != "none") {
g_blq <- g_alq <- NULL

if (censoring.type %in% c("both", "blq")) {
g_blq <-
plot_censored(
Expand All @@ -147,7 +147,7 @@ plot.tidyvpcobj <- function(x,
show.binning
)
}

if (censoring.type %in% c("both", "alq")) {
g_alq <-
plot_censored(
Expand All @@ -161,14 +161,14 @@ plot.tidyvpcobj <- function(x,
show.binning
)
}

grid_list <-
c(list(g, g_blq,g_alq),
grid_args)
grid_list <-
grid_list[!sapply(grid_list, function(x)
is.null(x) || is.symbol(x))]

if (censoring.output == "grid") {
#Return egg
g <- do.call(egg::ggarrange, grid_list)
Expand All @@ -181,6 +181,37 @@ plot.tidyvpcobj <- function(x,
g
}

#' Expand single-value vpc groups to a finite width so that they show up with `geom_ribbon()`
#'
#' @param vpc The vpc object
#' @return A data frame of the vpc$strat possibly with additional rows for
#' single-value groups
#' @noRd
expand_vpc_stats_single_value <- function(vpc, xvar, width = 0.0001) {
d_vpc_stats <- vpc$strat
Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@certara-jcraig Ah, this line should be vpc$stats not vpc$strat

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That makes a lot more sense! Updated dplyr commands to data.table.

if (!is.null(vpc$strat)) {
d_vpc_stats <-
dplyr::grouped_df(vpc$stats, vars = names(vpc$strat)) %>%
certara-jcraig marked this conversation as resolved.
Show resolved Hide resolved
dplyr::mutate(
n_xvar = length(unique(!!sym(xvar)))
)
mask_n1 <- d_vpc_stats$n_xvar == 1
if (any(mask_n1)) {
d_vpc_stats_single <- d_vpc_stats[mask_n1, ]
d_vpc_stats_single_low <- d_vpc_stats_single_high <- d_vpc_stats_single
d_vpc_stats_single_low[[xvar]] <- d_vpc_stats_single_low[[xvar]] - width/2
d_vpc_stats_single_high[[xvar]] <- d_vpc_stats_single_high[[xvar]] + width/2

d_vpc_stats <-
dplyr::bind_rows(
d_vpc_stats[!mask_n1, ],
d_vpc_stats_single_low,
d_vpc_stats_single_high
)
}
}
d_vpc_stats
}

plot_continuous <-
function(vpc,
Expand All @@ -207,15 +238,17 @@ plot_continuous <-
stop(paste0("point.shape must be one of ", paste0(names(point_shape_vec), collapse = ", ")))
point.shape <-
as.numeric(point_shape_vec[names(point_shape_vec) == point.shape])

if (method == "binning") {
xvar <- "xbin"
} else {
xvar <- "x"
}

if (show.stats) {
g <- ggplot2::ggplot(vpc$stats, ggplot2::aes(x = !!sym(xvar))) +
d_vpc_stats <- expand_vpc_stats_single_value(vpc = vpc, xvar = xvar)
g <-
ggplot2::ggplot(d_vpc_stats, ggplot2::aes(x = !!sym(xvar))) +
ggplot2::geom_ribbon(
ggplot2::aes(
ymin = lo,
Expand Down Expand Up @@ -262,7 +295,7 @@ plot_continuous <-
} else {
g <- ggplot2::ggplot(vpc$strat)
}

if (show.points) {
points.dat <- copy(vpc$obs)
if (isTRUE(vpc$predcor) && method == "binless") {
Expand Down Expand Up @@ -302,7 +335,7 @@ plot_continuous <-
)
}
}

if (show.boundaries && method == "binning") {
if (!is.null(vpc$strat)) {
boundaries <-
Expand All @@ -328,7 +361,7 @@ plot_continuous <-
linewidth = 1
)
}

if (facet) {
if (!is.null(vpc$strat)) {
g <-
Expand Down Expand Up @@ -363,22 +396,22 @@ plot_categorical <-
point.shape,
point.stroke,
point.alpha) {

y <- md <- pname <- hi <- lo <- NULL

method <- vpc$vpc.method$method
if (method == "binning") {
xvar <- "xbin"
} else {
xvar <- "x"
}

point_shape_vec <- .get_point_shapes()
if (!point.shape %in% names(point_shape_vec))
stop(paste0("point.shape must be one of ", paste0(names(point_shape_vec), collapse = ", ")))
point.shape <-
as.numeric(point_shape_vec[names(point_shape_vec) == point.shape])

g <- ggplot(vpc$stats, aes(x = !!sym(xvar))) +
geom_ribbon(
aes(
Expand Down Expand Up @@ -429,7 +462,7 @@ plot_categorical <-
colour = guide_legend(order = 2),
linetype = guide_legend(order = 1)
)

if (facet) {
if (!is.null(vpc$strat)) {
g <-
Expand All @@ -456,9 +489,9 @@ plot_categorical <-
g + ggplot2::facet_wrap(names(vpc$strat), scales = facet.scales, label = label_both)
}
}

return(g)

}


Expand All @@ -471,19 +504,19 @@ plot_censored <-
show.points,
show.boundaries,
show.binning) {

stopifnot(inherits(vpc, "tidyvpcobj"))
hi <- lo <- md <- xbin <- y <- NULL
. <- list

method <- vpc$vpc.method$method

if(method == "binning") {
xvar <- "xbin"
} else {
xvar <- "x"
}

type <- match.arg(type)

df_name <- paste0("pct", type)
Expand All @@ -496,17 +529,17 @@ plot_censored <-
"data."
)
}

g <- ggplot(df)

if (!is.null(vpc$strat)) {
if (length(as.list(vpc$strat.formula)) == 3) {
g <- g + ggplot2::facet_grid(vpc$strat.formula, scales = facet.scales)
} else {
g <- g + ggplot2::facet_wrap(names(vpc$strat), scales = facet.scales)
}
}

g <- g +
geom_ribbon(aes(x = !!sym(xvar), ymin = lo, ymax = hi),
fill = "red",
Expand All @@ -524,7 +557,7 @@ plot_censored <-
observed = "black")
) +
labs(x = "TIME", y = paste0("% ", toupper(type)))

# ensure x axis is same scale given options in vpc plot that can affect xmax
if (method == "binning" &&
any(show.binning, show.boundaries, show.points)) {
Expand Down Expand Up @@ -554,7 +587,7 @@ plot_censored <-
alpha = 0
)
}

# add theme
if (is.null(custom.theme)) {
g <- g + ggplot2::theme_bw() + tidyvpc_theme(legend.position = legend.position)
Expand All @@ -565,7 +598,7 @@ plot_censored <-
} else if (inherits(custom.theme, "theme")) {
g <- g + custom.theme
}

return(g)
}

Expand Down
59 changes: 32 additions & 27 deletions R/vpcstats.R
Original file line number Diff line number Diff line change
Expand Up @@ -525,7 +525,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
stop("Invalid xbin")
}
vpc.method <- list(method = "binning")

# check if user supplied predcorrect before binning
if (!is.null(o$predcor) && o$predcor) {
pred <- o$pred
Expand All @@ -540,7 +540,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
o$sim[, ypc := ifelse(rep(pred, times = nrow(o$sim) / nrow(o$obs)) == 0, 0, (mpred / pred) * y)]
}
}

update(o, xbin=xbin, vpc.method = vpc.method)
}

Expand Down Expand Up @@ -606,13 +606,13 @@ predcorrect.tidyvpcobj <- function(o, pred, data=o$data, ..., log=FALSE) {

stratbin <- o$.stratbin
# predcorrect after binning, check if binning/binless has already been specified

if (!is.null(o$vpc.method)) {
if(o$vpc.method$method == "binless") {
o$vpc.method$loess.ypc <- TRUE
} else { #binning specified, perform ypc calculcation
mpred <- data.table(stratbin, pred)[, mpred := median(pred), by = stratbin]$mpred

if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
Expand Down Expand Up @@ -858,32 +858,37 @@ bin_by_classInt <- function(style, nbins=NULL) {
nbins <- .check_nbins(nbins)
}
function(x, ...) {
args <- list(var=x, style=style)
if (!is.null(nbins)) {
nbins <- .resolve_nbins(nbins, ...)
args$n <- nbins
}
args <- c(args, list(...))
if (style %in% c("kmeans", "hclust", "dpih")) {
# These don't accept '...' arguments
args1 <- args[intersect(names(args), methods::formalArgs(classInt::classIntervals))]
args2 <- if (style == "kmeans") {
args[intersect(names(args), methods::formalArgs(stats::kmeans))]
} else if (style == "hclust") {
args[intersect(names(args), methods::formalArgs(stats::hclust))]
} else if (style == "dpih") {
has_KernSmooth <- requireNamespace("KernSmooth", quietly=TRUE)
if (!has_KernSmooth) {
stop("Package 'KernSmooth' is required to use the binning method. Please install it.")
if (length(unique(x)) > 1) {
args <- list(var=x, style=style)
if (!is.null(nbins)) {
nbins <- .resolve_nbins(nbins, ...)
args$n <- nbins
}
args <- c(args, list(...))
if (style %in% c("kmeans", "hclust", "dpih")) {
# These don't accept '...' arguments
args1 <- args[intersect(names(args), methods::formalArgs(classInt::classIntervals))]
args2 <- if (style == "kmeans") {
args[intersect(names(args), methods::formalArgs(stats::kmeans))]
} else if (style == "hclust") {
args[intersect(names(args), methods::formalArgs(stats::hclust))]
} else if (style == "dpih") {
has_KernSmooth <- requireNamespace("KernSmooth", quietly=TRUE)
if (!has_KernSmooth) {
stop("Package 'KernSmooth' is required to use the binning method. Please install it.")
}
args[intersect(names(args), methods::formalArgs(KernSmooth::dpih))]
} else {
list()
}
args[intersect(names(args), methods::formalArgs(KernSmooth::dpih))]
} else {
list()
args <- c(args1, args2)
}
args <- c(args1, args2)
args <- args[!duplicated(args)]
breaks <- do.call(classInt::classIntervals, args)$brks
} else {
# If a group has a single value, `classInt::classIntervals` gives an error
breaks <- rep(1, length(x))
}
args <- args[!duplicated(args)]
breaks <- do.call(classInt::classIntervals, args)$brks
cut_at(breaks)(x)
}
}
Expand Down
Loading