Docker Hub Repository | Swift Satellite
The Swift DeepSky pipeline provides automated deep observations of the X-ray sky from the Swift satellite, processing data based on user-defined sky positions (Right Ascension and Declination).
To use Swift DeepSky, ensure Docker is installed on your system:
Step 1: Launch CalDB Container
Swift DeepSky depends on calibration data provided by the CalDB container:
docker run --name caldb chbrandt/heasoft_caldb:swift
Step 2: Run Swift DeepSky Container
Run the Swift DeepSky pipeline, binding the CalDB container and mounting a local directory ($HOME/sds_output
) to store outputs:
docker run --rm -it --volumes-from caldb -v $HOME/sds_output:/work chbrandt/swift_deepsky --ra 34.2608 --dec 1.2455
Replace $HOME/sds_output
with your desired output directory.
Tip: Create an alias for simplicity:
alias swift_deepsky='docker run --rm -it --volumes-from caldb -v $HOME/sds_output:/work chbrandt/swift_deepsky'
--volumes-from caldb
: Mounts calibration data from CalDB.-v $HOME/sds_output:/work
: Maps a local directory to store outputs.
Process Swift-XRT images within a 15-arcmin radius:
swift_deepsky --ra 22 --dec 33 --radius 15
Process observations for a specific object and time period:
swift_deepsky --object 3c279 --start 2018-01-01 --end 2018-02-28
To avoid network traffic, use a local master table (--master_table
). Place your table (e.g., my_swift_master_table.csv
) in a dedicated directory:
docker run --rm -it --volumes-from caldb -v $PWD/sds_runs:/work chbrandt/swift_deepsky --master_table /work/my_swift_master_table.csv --ra 22 --dec 33
A complete help message with options is displayed using:
swift_deepsky --help
- HEASoft (v6.21)
- Python (Pandas, Astropy)
- Perl
- Bash
Detailed instructions can be found here.
Swift DeepSky automates the combination and analysis of Swift satellite X-ray data, allowing deep-sky observations from user-defined sky coordinates (Right Ascension, Declination). Data is automatically retrieved as needed unless provided by the user.