Skip to content

chodurkhyun/cleanir

Repository files navigation

CLEANIR: Controllable Attribute-Preserving Natural Identity Remover

This is the official implementation of CLEANIR: Controllable Attribute-Preserving Natural Identity Remover

CLEANIR Demo

Requirements

  • face-recognition>=1.2.3
  • opencv-python>=4.1.0.25
  • Keras>=2.2.4
  • tensorflow-gpu>=1.13.0rc0+nv
  • matplotlib>=3.0.2
  • numpy>=1.14.5
  • pandas>=0.23.0
  • tqdm>=4.32.2
  • gdown>=3.10.2
  • keras-facenet>=0.1a5 (if you want to run codes for evaluation on de-identification)
  • azure-cognitiveservices-vision-face>=0.4.0 (if you want to run codes for evaluation on preserving facial emotion)

Testing environment

  • Ubuntu 16.04
  • Python 3.5.2
  • Keras 2.2.4 (backend=TensorFlow 1.13.0-rc0)

Usage

Please check CLEANIR_notebook.ipynb for testing and CLEANIR_train_notebook.ipynb for training.

Citation

If you find this work useful for your research, please consider citing our paper:

@article{cho2020cleanir,
  title={CLEANIR: Controllable Attribute-Preserving Natural Identity Remover},
  author={Cho, Durkhyun and Lee, Jin Han and Suh, Il Hong},
  journal={Applied Sciences},
  volume={10},
  number={3},
  pages={1120},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}

About

Official implementation of CLEANIR

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published