turboSETI is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time). The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!! It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.
NOTE: This code is stable, but new features are currently under development. 'Git pull' for the latest version.
Some details for the expert eye:
- Python based, with taylor tree in Numba for improved performance.
- Pre-calculated
drift index arrays
. - Output plain text file with information on each hit.
- Including output reader into a pandas DataFrame.
It was originally based on dedoppler
dedoppler; which is based on rawdopplersearch.c
gbt_seti/src/rawdopplersearch.c
)
- Python 3.7+
- astropy
- numpy
- blimpy (Breakthrough Listen I/O Methods for Python : https://github.com/UCBerkeleySETI/blimpy)
- pandas
- toolz
- fsspec
- dask
- dask[bag]
- numba
- cupy (NVIDIA GPU mode only)
If you have not yet installed blimpy, do so in this manner:
python3 -m pip install -U git+https://github.com/UCBerkeleySETI/blimpy
Then, install turbo_seti directly from this repository:
python3 -m pip install -U git+https://github.com/UCBerkeleySETI/turbo_seti
Already included is NUMBA Just-in-Time (JIT) CPU performance enhancements. However, if you have NVIDIA GPU hardware on the computer where turbo_seti is going to execute, you can get significant additional performance improvement. Enable GPU enhanced processing with these steps:
- Install pypi package "cupy":
python3 -m pip install cupy
- Run the executable this way:
turboSETI <FULL_PATH_TO_INPUT_HDF5_FILE> -g y [OTHER OPTIONS]
Once you are using a GPU, you may also want to use the --single_precision=y
flag, to use float32 rather than float64 processing. Each of
these changes has the potential to roughly double turboSETI's speed, although performance improvements always depend on the details of
your hardware and data set.
At the moment, the turboSETI
command line and the FindDoppler
object expect an HDF5 file (.h5) or a Filterbank file (.fil) such as produced by one of the blimpy utilities.
Run with data: turboSETI <FULL_PATH_TO_INPUT_HDF5_FILE> [OPTIONS]
For an explanation of the program options: turboSETI -h
from turbo_seti.find_doppler.find_doppler import FindDoppler
fdop = FindDoppler(datafile=my_HDF5_file, ...)
fdop.search(...)
import time
from blimpy import Waterfall
from turbo_seti.find_doppler.find_doppler import FindDoppler
H5DIR = "/seti_data/voyager/"
H5PATH = H5DIR + "Voyager1.single_coarse.fine_res.h5"
OUT_DIR_BASE = H5DIR
print("\nUsing HDF5 file: {}\nHeader and data shape:".format(H5PATH))
# -- Get a report of header and data shape
wf = Waterfall(H5PATH)
wf.info()
# -- Instantiate FindDoppler.
print("\nInstantiating the FindDoppler object.")
fdop = FindDoppler(datafile=H5PATH, max_drift=4, snr=25, out_dir=H5DIR)
# -- Search for hits and report elapsed time.
print("\nBegin doppler search. Please wait ...")
t1 = time.time()
fdop.search()
elapsed_time = time.time() - t1
print("\nFindDoppler.search() elapsed time = {} seconds".format(elapsed_time))
# -------------------------- o --------------------------
# File ID: Voyager1.single_coarse.fine_res.h5
# -------------------------- o --------------------------
# Source:Voyager1
# MJD: 57650.782094907408 RA: 17h10m03.984s DEC: 12d10m58.8s
# DELTAT: 18.253611 DELTAF(Hz): -2.793968
# --------------------------
# Top_Hit_# Drift_Rate SNR Uncorrected_Frequency Corrected_Frequency Index freq_start freq_end SEFD SEFD_freq Coarse_Channel_Number Full_number_of_hits
# --------------------------
001 -0.392226 30.612128 8419.319368 8419.319368 739933 8419.321003 8419.317740 0.0 0.000000 0 858
002 -0.373093 245.707984 8419.297028 8419.297028 747929 8419.298662 8419.295399 0.0 0.000000 0 858
003 -0.392226 31.220652 8419.274374 8419.274374 756037 8419.276009 8419.272745 0.0 0.000000 0 858
Note that the coarse channel number appears as a suffix of the logger name. For example, "find_doppler.8" depicts logging for find_doppler.py in coarse channel number 8 (relative to 0).
Using HDF5 file: /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
Header and data shape:
--- File Info ---
DIMENSION_LABELS : ['frequency' 'feed_id' 'time']
az_start : 0.0
data_type : 1
fch1 : 8421.386717353016 MHz
foff : -2.7939677238464355e-06 MHz
ibeam : 1
machine_id : 20
nbeams : 1
nbits : 32
nchans : 1048576
nifs : 1
rawdatafile : guppi_57650_67573_Voyager1_0002.0000.raw
source_name : Voyager1
src_dej : 12:10:58.8
src_raj : 17:10:03.984
telescope_id : 6
tsamp : 18.253611008
tstart (ISOT) : 2016-09-19T18:46:13.000
tstart (MJD) : 57650.78209490741
za_start : 0.0
Num ints in file : 16
File shape : (16, 1, 1048576)
--- Selection Info ---
Data selection shape : (16, 1, 1048576)
Minimum freq (MHz) : 8418.457032646984
Maximum freq (MHz) : 8421.386717353016
Instantiating the FindDoppler object.
find_doppler.0 INFO {'DIMENSION_LABELS': array(['frequency', 'feed_id', 'time'], dtype=object), 'az_start': 0.0, 'data_type': 1, 'fch1': 8421.386717353016, 'foff': -2.7939677238464355e-06, 'ibeam': 1, 'machine_id': 20, 'nbeams': 1, 'nbits': 32, 'nchans': 1048576, 'nifs': 1, 'rawdatafile': 'guppi_57650_67573_Voyager1_0002.0000.raw', 'source_name': 'Voyager1', 'src_dej': <Angle 12.183 deg>, 'src_raj': <Angle 17.16777333 hourangle>, 'telescope_id': 6, 'tsamp': 18.253611008, 'tstart': 57650.78209490741, 'za_start': 0.0}
Begin doppler search. Please wait ...
find_doppler.0 INFO File: /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
drift rates (min, max): (0.000000, 4.000000)
SNR: 25.000000
Starting ET search using /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
find_doppler.0 INFO Parameters: datafile=/seti_data/voyager/Voyager1.single_coarse.fine_res.h5, max_drift=4, min_drift=0.0, snr=25, out_dir=/seti_data/voyager/, coarse_chans=None, flagging=False, n_coarse_chan=None, kernels=None, gpu_backend=False, precision=2, append_output=False, log_level_int=20, obs_info={'pulsar': 0, 'pulsar_found': 0, 'pulsar_dm': 0.0, 'pulsar_snr': 0.0, 'pulsar_stats': array([0., 0., 0., 0., 0., 0.]), 'RFI_level': 0.0, 'Mean_SEFD': 0.0, 'psrflux_Sens': 0.0, 'SEFDs_val': [0.0], 'SEFDs_freq': [0.0], 'SEFDs_freq_up': [0.0]}
find_doppler.0 INFO Top hit found! SNR 30.612128, Drift Rate -0.392226, index 739933
find_doppler.0 INFO Top hit found! SNR 245.707984, Drift Rate -0.373093, index 747929
find_doppler.0 INFO Top hit found! SNR 31.220652, Drift Rate -0.392226, index 756037
FindDoppler.search() elapsed time = 9.972093105316162 seconds