Skip to content

Commit

Permalink
New Problem Solution -"Number Of Rectangles That Can Form The Largest…
Browse files Browse the repository at this point in the history
… Square"
  • Loading branch information
haoel committed Mar 27, 2021
1 parent 3c577b4 commit 10e14ba
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ LeetCode
|1734|[Decode XORed Permutation](https://leetcode.com/problems/decode-xored-permutation/) | [C++](./algorithms/cpp/decodeXORedPermutation/DecodeXoredPermutation.cpp)|Medium|
|1733|[Minimum Number of People to Teach](https://leetcode.com/problems/minimum-number-of-people-to-teach/) | [C++](./algorithms/cpp/minimumNumberOfPeopleToTeach/MinimumNumberOfPeopleToTeach.cpp)|Medium|
|1732|[Find the Highest Altitude](https://leetcode.com/problems/find-the-highest-altitude/) | [C++](./algorithms/cpp/findTheHighestAltitude/FindTheHighestAltitude.cpp)|Easy|
|1725|[Number Of Rectangles That Can Form The Largest Square](https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/) | [C++](./algorithms/cpp/numberOfRectanglesThatCanFormTheLargestSquare/NumberOfRectanglesThatCanFormTheLargestSquare.cpp)|Easy|
|1625|[Lexicographically Smallest String After Applying Operations](https://leetcode.com/problems/lexicographically-smallest-string-after-applying-operations/) | [C++](./algorithms/cpp/lexicographicallySmallestStringAfterApplyingOperations/LexicographicallySmallestStringAfterApplyingOperations.cpp)|Medium|
|1624|[Largest Substring Between Two Equal Characters](https://leetcode.com/problems/largest-substring-between-two-equal-characters/) | [C++](./algorithms/cpp/largestSubstringBetweenTwoEqualCharacters/LargestSubstringBetweenTwoEqualCharacters.cpp)|Easy|
|1605|[Find Valid Matrix Given Row and Column Sums](https://leetcode.com/problems/find-valid-matrix-given-row-and-column-sums/) | [C++](./algorithms/cpp/FindValidMatrixGivenRowAndColumnSums/FindValidMatrixGivenRowAndColumnSums.cpp)|Medium|
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
// Source : https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/
// Author : Hao Chen
// Date : 2021-03-27

/*****************************************************************************************************
*
* You are given an array rectangles where rectangles[i] = [li, wi] represents the i^th rectangle of
* length li and width wi.
*
* You can cut the i^th rectangle to form a square with a side length of k if both k <= li and k <=
* wi. For example, if you have a rectangle [4,6], you can cut it to get a square with a side length
* of at most 4.
*
* Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.
*
* Return the number of rectangles that can make a square with a side length of maxLen.
*
* Example 1:
*
* Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
* Output: 3
* Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
* The largest possible square is of length 5, and you can get it out of 3 rectangles.
*
* Example 2:
*
* Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
* Output: 3
*
* Constraints:
*
* 1 <= rectangles.length <= 1000
* rectangles[i].length == 2
* 1 <= li, wi <= 10^9
* li != wi
******************************************************************************************************/

class Solution {
public:
int countGoodRectangles(vector<vector<int>>& rectangles) {
return countGoodRectangles2(rectangles);
return countGoodRectangles1(rectangles);
}

int countGoodRectangles1(vector<vector<int>>& rectangles) {
int maxLen = 0;
for(auto& rect : rectangles) {
int len = min(rect[0], rect[1]);
maxLen = max(maxLen, len);
}

int cnt = 0;
for(auto& rect : rectangles) {
if (maxLen <= rect[0] && maxLen <= rect[1]) cnt++;
}
return cnt;
}

int countGoodRectangles2(vector<vector<int>>& rectangles) {
int maxLen = 0;
int cnt = 0;
for(auto& rect : rectangles) {
int len = min(rect[0], rect[1]);
if (len > maxLen ) {
cnt = 1;
maxLen = len;
}else if (len == maxLen ) {
cnt++;
}
}

return cnt;
}
};

0 comments on commit 10e14ba

Please sign in to comment.