forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
New Problem Solution - "1884. Egg Drop With 2 Eggs and N Floors"
- Loading branch information
Showing
2 changed files
with
90 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
89 changes: 89 additions & 0 deletions
89
algorithms/cpp/eggDropWith2EggsAndNFloors/EggDropWith2EggsAndNFloors.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
// Source : https://leetcode.com/problems/egg-drop-with-2-eggs-and-n-floors/ | ||
// Author : Hao Chen | ||
// Date : 2021-11-15 | ||
|
||
/***************************************************************************************************** | ||
* | ||
* You are given two identical eggs and you have access to a building with n floors labeled from 1 to | ||
* n. | ||
* | ||
* You know that there exists a floor f where 0 <= f <= n such that any egg dropped at a floor higher | ||
* than f will break, and any egg dropped at or below floor f will not break. | ||
* | ||
* In each move, you may take an unbroken egg and drop it from any floor x (where 1 <= x <= n). If the | ||
* egg breaks, you can no longer use it. However, if the egg does not break, you may reuse it in | ||
* future moves. | ||
* | ||
* Return the minimum number of moves that you need to determine with certainty what the value of f is. | ||
* | ||
* Example 1: | ||
* | ||
* Input: n = 2 | ||
* Output: 2 | ||
* Explanation: We can drop the first egg from floor 1 and the second egg from floor 2. | ||
* If the first egg breaks, we know that f = 0. | ||
* If the second egg breaks but the first egg didn't, we know that f = 1. | ||
* Otherwise, if both eggs survive, we know that f = 2. | ||
* | ||
* Example 2: | ||
* | ||
* Input: n = 100 | ||
* Output: 14 | ||
* Explanation: One optimal strategy is: | ||
* - Drop the 1st egg at floor 9. If it breaks, we know f is between 0 and 8. Drop the 2nd egg starting | ||
* from floor 1 and going up one at a time to find f within 7 more drops. Total drops is 1 + 7 = 8. | ||
* - If the 1st egg does not break, drop the 1st egg again at floor 22. If it breaks, we know f is | ||
* between 9 | ||
* and 21. Drop the 2nd egg starting from floor 10 and going up one at a time to find f within 12 | ||
* more | ||
* drops. Total drops is 2 + 12 = 14. | ||
* - If the 1st egg does not break again, follow a similar process dropping the 1st egg from floors | ||
* 34, 45, | ||
* 55, 64, 72, 79, 85, 90, 94, 97, 99, and 100. | ||
* Regardless of the outcome, it takes at most 14 drops to determine f. | ||
* | ||
* Constraints: | ||
* | ||
* 1 <= n <= 1000 | ||
******************************************************************************************************/ | ||
|
||
/* | ||
1 floor - 1 attemp | ||
2 floors - 2 attemps | ||
3 floors - 2 attemps | ||
4 floors - 3 attemps | ||
5 floors - 3 attemps | ||
6 floors - 3 attemps | ||
7 floors - 4 attemps | ||
... | ||
11 floors - 5 attemps | ||
... | ||
16 floors - 6 attemps | ||
... | ||
22 floors - 7 attemps | ||
... | ||
we can see: | ||
floor(1) = 1 | ||
floor(2) = 2 | ||
floor(4) = 3 | ||
floor(7) = 4 | ||
floor(11) = 5 | ||
floor(16) = 6 | ||
floor(22) = 7 | ||
... | ||
*/ | ||
|
||
|
||
class Solution { | ||
public: | ||
int twoEggDrop(int n) { | ||
int c = 1, i=1; | ||
while(c < n) { | ||
c += i; | ||
i++; | ||
} | ||
return c==n ? i : i-1; | ||
} | ||
}; |