Skip to content

A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation).

License

Notifications You must be signed in to change notification settings

colinmorris/TensorFlow-VAE-GAN-DRAW

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TF-VAE-GAN-DRAW

TensorFlow implementation of Deep Convolutional Generative Adversarial Networks, Variational Autoencoder (also Deep and Convolutional) and DRAW: A Recurrent Neural Network For Image Generation.

Run

VAE/GAN:

python main.py --working_directory /tmp/gan --model vae

DRAW:

python main-draw.py --working_directory /tmp/gan

Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.

###TODO:

  • More complex data.
  • Add Adversarial Autoencoder
  • Replace current attention mechanism with Spatial Transformer Layer

About

A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%