Skip to content

Commit

Permalink
Start using DifferentiationInterface
Browse files Browse the repository at this point in the history
  • Loading branch information
gdalle committed May 29, 2024
1 parent b73f56d commit f18da04
Show file tree
Hide file tree
Showing 3 changed files with 23 additions and 8 deletions.
4 changes: 3 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
name = "CTBase"
uuid = "54762871-cc72-4466-b8e8-f6c8b58076cd"
authors = ["Olivier Cots <[email protected]>"]
version = "0.9.0"
version = "0.9.1"

[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
DifferentiationInterface = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63"
DocStringExtensions = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Interpolations = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59"
Expand All @@ -21,6 +22,7 @@ Unicode = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"

[compat]
DataStructures = "0.18"
DifferentiationInterface = "0.5"
DocStringExtensions = "0.9"
ForwardDiff = "0.10"
Interpolations = "0.15"
Expand Down
3 changes: 2 additions & 1 deletion src/CTBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ module CTBase
# using
import Base
using DocStringExtensions
using ForwardDiff: jacobian, gradient, ForwardDiff # automatic differentiation
using DifferentiationInterface: AutoForwardDiff, derivative, gradient, jacobian, prepare_derivative, prepare_gradient, prepare_jacobian
using ForwardDiff: ForwardDiff # automatic differentiation
using Interpolations: linear_interpolation, Line, Interpolations # for default interpolation
using MLStyle # pattern matching
using Parameters # @with_kw: to have default values in struct
Expand Down
24 changes: 18 additions & 6 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,9 @@ $(TYPEDSIGNATURES)
Return the gradient of `f` at `x`.
"""
function ctgradient(f::Function, x::ctNumber)
return ForwardDiff.derivative(x -> f(x), x)
backend = AutoForwardDiff()
extras = prepare_derivative(f, backend, x)
return derivative(f, backend, x, extras)
end

"""
Expand All @@ -83,7 +85,9 @@ $(TYPEDSIGNATURES)
Return the gradient of `f` at `x`.
"""
function ctgradient(f::Function, x)
return ForwardDiff.gradient(f, x)
backend = AutoForwardDiff()
extras = prepare_gradient(f, backend, x)
return gradient(f, backend, x, extras)
end

"""
Expand All @@ -98,16 +102,24 @@ $(TYPEDSIGNATURES)
Return the Jacobian of `f` at `x`.
"""
function ctjacobian(f::Function, x::ctNumber)
return ForwardDiff.jacobian(x -> f(x[1]), [x])
function ctjacobian(f::Function, x::ctNumber)
f_number_to_number = only f only
backend = AutoForwardDiff()
extras = prepare_derivative(f_number_to_number, backend, x)
der = derivative(f_number_to_number, backend, x, extras)
return [der;;]
end

"""
$(TYPEDSIGNATURES)
Return the Jacobian of `f` at `x`.
"""
ctjacobian(f::Function, x) = ForwardDiff.jacobian(f, x)
function ctjacobian(f::Function, x)
backend = AutoForwardDiff()
extras = prepare_jacobian(f, backend, x)
return jacobian(f, backend, x, extras)
end

"""
$(TYPEDSIGNATURES)
Expand Down Expand Up @@ -195,4 +207,4 @@ function matrix2vec(x::Matrix{<:ctNumber}, dim::Integer=__matrix_dimension_stock
end
end
return y
end
end

0 comments on commit f18da04

Please sign in to comment.