Skip to content

Commit

Permalink
fix most deprecations in 8.19 and later
Browse files Browse the repository at this point in the history
  • Loading branch information
palmskog committed Jul 12, 2024
1 parent 6ba0acc commit c41b7dc
Show file tree
Hide file tree
Showing 9 changed files with 47 additions and 44 deletions.
13 changes: 7 additions & 6 deletions examples/plain/Context.v
Original file line number Diff line number Diff line change
Expand Up @@ -67,12 +67,13 @@ Proof.
- split.
+ autosubst.
+ autosubst.
- simpl. cutrewrite (A.[ren (+S (length Delta))] =
A.[ren(+length Delta)].[ren(+1)]); [idtac|autosubst].
- simpl.
replace (A.[ren (+S (length Delta))]) with
(A.[ren(+length Delta)].[ren(+1)]); [idtac|autosubst].
split.
+ econstructor. eapply IHDelta; eassumption. reflexivity.
+ intros H. inv H. rewrite IHDelta. apply lift_inj in H5.
subst. eassumption.
+ econstructor. eapply IHDelta; eassumption. reflexivity.
+ intros H. inv H. rewrite IHDelta. apply lift_inj in H5.
subst. eassumption.
Qed.

Lemma atnd_steps' x Gamma Delta A :
Expand All @@ -83,7 +84,7 @@ Proof.
induction Delta; intros.
- exists A.
simpl in H.
rewrite plus_0_r in H. intuition autosubst.
rewrite Nat.add_0_r in H. intuition autosubst.
- asimpl. simpl in *.
rewrite plusnS in *.
inv H.
Expand Down
15 changes: 8 additions & 7 deletions examples/plain/POPLmark.v
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ Proof.
* now rewrite ren_size_inv.
* intros. change (B' :: Delta) with ((B' :: nil) ++ Delta).
rewrite app_assoc.
cutrewrite (S (length Delta') = length (Delta' ++ B' :: nil)).
replace (S (length Delta')) with (length (Delta' ++ B' :: nil)).
now apply atnd_steps.
rewrite app_length. simpl. lia.
* asimpl in IHsub.
Expand Down Expand Up @@ -298,7 +298,8 @@ Lemma ty_weak_ty xi Delta1 Delta2 Gamma1 Gamma2 s s' A A':
s' = s.|[ren xi] ->
TY Delta2;Gamma2 |- s' : A'.
Proof.
intros. subst. cutrewrite(s.|[ren xi] = s.|[ren xi].[ren id]).
intros. subst.
replace (s.|[ren xi]) with (s.|[ren xi].[ren id]).
eapply ty_weak; eauto. now autosubst.
Qed.

Expand All @@ -319,8 +320,8 @@ Lemma ty_weak_ter xi Delta Gamma1 Gamma2 s A :
TY Delta;Gamma2 |- s.[ren xi] : A.
Proof.
intros.
cutrewrite (s = s.|[ren id]).
cutrewrite (A = A.[ren id]).
replace s with (s.|[ren id]).
replace A with (A.[ren id]).
eapply ty_weak; eauto; intros; asimpl; now eauto.
autosubst. autosubst.
Qed.
Expand Down Expand Up @@ -415,8 +416,8 @@ Corollary ty_subst_term Delta Gamma1 Gamma2 s A sigma:
TY Delta;Gamma2 |- s.[sigma] : A.
Proof.
intros.
cutrewrite(s = s.|[ids]);[idtac|autosubst].
cutrewrite (A = A.[ids]);[idtac|autosubst].
replace s with (s.|[ids]);[idtac|autosubst].
replace A with (A.[ids]);[idtac|autosubst].
eapply ty_subst; eauto; intros.
- asimpl; eauto using sub, sub_refl.
- asimpl; eauto using sub, sub_refl.
Expand Down Expand Up @@ -488,7 +489,7 @@ Proof.
+ pose proof (ty_inv_abs H0 H1) as [? [B' [? ?]]].
eapply ty_subst_term; eauto using ty.
intros [|] ? ?; simpl in *; subst; eauto using ty.
- cutrewrite (s.|[B/] = s.|[B/].[ids]);[idtac|autosubst].
- replace (s.|[B/]) with (s.|[B/].[ids]);[idtac|autosubst].
inv H_ty; [idtac | pose proof (ty_inv_tabs H1 H2) as [? [B' [? ?]]]];
(eapply ty_subst; eauto using ty; [
now intros ? ? H_atnd; inv H_atnd; asimpl; eauto using sub, sub_refl
Expand Down
2 changes: 1 addition & 1 deletion examples/plain/Size.v
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ Arguments size_fact {A} x {P _}.

Lemma size_app (A : Type) (size_A : Size A) l1 l2 :
size (app l1 l2) = size l1 + size l2.
Proof. induction l1; simpl; intuition. Qed.
Proof. induction l1; simpl; intuition (auto with zarith). Qed.
Global Hint Rewrite @size_app : size.

Global Instance size_fact_app (A : Type) (size_A : Size A) l1 l2 :
Expand Down
17 changes: 9 additions & 8 deletions examples/ssr/ARS.v
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope prop_scope.
Delimit Scope prop_scope with PROP.
Open Scope prop_scope.

Expand Down Expand Up @@ -41,7 +42,7 @@ Definition diamond := forall x y z, e x y -> e x z -> exists2 u, e y u & e z u.
Definition confluent := forall x y z, star x y -> star x z -> joinable star y z.
Definition CR := forall x y, conv x y -> joinable star x y.

Local Hint Resolve starR convR.
Local Hint Resolve starR convR : core.

Lemma star1 x y : e x y -> star x y.
Proof. exact: starSE. Qed.
Expand All @@ -53,7 +54,7 @@ Lemma starES x y z : e x y -> star y z -> star x z.
Proof. move/star1. exact: star_trans. Qed.

Lemma star_conv x y : star x y -> conv x y.
Proof. elim=> //={y} y z _. exact: convSE. Qed.
Proof. elim=> //={} y z _. exact: convSE. Qed.

Lemma conv1 x y : e x y -> conv x y.
Proof. exact: convSE. Qed.
Expand All @@ -71,7 +72,7 @@ Lemma convESi x y z : e y x -> conv y z -> conv x z.
Proof. move/conv1i. exact: conv_trans. Qed.

Lemma conv_sym x y : conv x y -> conv y x.
Proof. elim=> //={y} y z _ ih h; [exact: convESi ih|exact: convES ih]. Qed.
Proof. elim=> //={} y z _ ih h; [exact: convESi ih|exact: convES ih]. Qed.

Lemma join_conv x y z : star x y -> star z y -> conv x z.
Proof.
Expand All @@ -82,17 +83,17 @@ Lemma confluent_cr :
confluent <-> CR.
Proof.
split=> [h x y|h x y z /star_conv A /star_conv B].
- elim=> [|{y} y z _ [u h1 h2] /star1 h3|{y} y z _ [u h1 h2] h3].
- elim=> [|{} y z _ [u h1 h2] /star1 h3|{} y z _ [u h1 h2] h3].
+ by exists x.
+ case: (h y u z h2 h3) => v {h2 h3} h2 h3.
+ case: (h y u z h2 h3) => v {h3} h2 h3.
exists v => //. exact: star_trans h2.
+ exists u => //. exact: starES h2.
- apply: h. apply: conv_trans B. exact: conv_sym.
Qed.

End Definitions.

Global Hint Resolve starR convR.
Global Hint Resolve starR convR : core.
Arguments star_trans {T e} y {x z} A B.
Arguments conv_trans {T e} y {x z} A B.

Expand Down Expand Up @@ -193,7 +194,7 @@ Inductive sn x : Prop :=
Lemma sn_preimage (h : T -> T) x :
(forall x y, e x y -> e (h x) (h y)) -> sn (h x) -> sn x.
Proof.
move eqn:(h x) => v A B. elim: B h x A eqn => {v} v _ ih h x A eqn.
move eqn:(h x) => v A B. elim: B h x A eqn => {} v _ ih h x A eqn.
apply: SNI => y /A. rewrite eqn => /ih; eauto.
Qed.

Expand Down Expand Up @@ -281,7 +282,7 @@ Qed.

Lemma sn_wn x : sn e x -> wn e x.
Proof.
elim=> {x} x _ ih. case (classical x) => [[y exy]|A].
elim=> {} x _ ih. case (classical x) => [[y exy]|A].
- case: (ih _ exy) => z [A B]. exists z. split=> //. exact: starES A.
- exists x. by split.
Qed.
Expand Down
2 changes: 1 addition & 1 deletion examples/ssr/CR.v
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ Proof. move<-. exact: pstep_beta. Qed.

Lemma pstep_refl s : pstep s s.
Proof. elim: s; eauto using pstep. Qed.
Global Hint Resolve pstep_refl.
Global Hint Resolve pstep_refl : core.

Lemma step_pstep s t : step s t -> pstep s t.
Proof. elim; eauto using pstep. Qed.
Expand Down
14 changes: 7 additions & 7 deletions examples/ssr/POPLmark.v
Original file line number Diff line number Diff line change
Expand Up @@ -66,14 +66,14 @@ where "'SUB' Gamma |- A <: B" := (sub Gamma A B).

Lemma sub_refl Gamma A : SUB Gamma |- A <: A.
Proof. elim: A Gamma; eauto using sub. Qed.
Global Hint Resolve sub_refl.
Global Hint Resolve sub_refl : core.

Lemma sub_ren Gamma Delta xi A B :
(forall x, x < size Gamma -> xi x < size Delta) ->
(forall x, x < size Gamma -> Delta`_(xi x) = (Gamma`_x).[ren xi]) ->
SUB Gamma |- A <: B -> SUB Delta |- A.[ren xi] <: B.[ren xi].
Proof.
move=> sub eqn ty. elim: ty Delta xi sub eqn => {Gamma A B} Gamma //=;
move=> sub eqn ty. elim: ty Delta xi sub eqn => {A B} Gamma //=;
eauto using sub.
- move=> x A lt _ ih Delta xi sub eqn. apply: sub_var_trans. exact: sub.
rewrite eqn //. exact: ih.
Expand All @@ -94,7 +94,7 @@ Lemma transitivity_proj Gamma A B C :
transitivity_at B ->
SUB Gamma |- A <: B -> SUB Gamma |- B <: C -> SUB Gamma |- A <: C.
Proof. move=> /(_ Gamma A C id). autosubst. Qed.
Global Hint Resolve transitivity_proj.
Global Hint Resolve transitivity_proj : core.

Lemma transitivity_ren B xi : transitivity_at B -> transitivity_at B.[ren xi].
Proof. move=> h Gamma A C zeta. asimpl. exact: h. Qed.
Expand Down Expand Up @@ -153,7 +153,7 @@ Lemma sub_subst Gamma Delta A B sigma :
(forall x, x < size Gamma -> SUB Delta |- sigma x <: (Gamma`_x).[sigma]) ->
SUB Gamma |- A <: B -> SUB Delta |- A.[sigma] <: B.[sigma].
Proof with eauto using sub.
move=> h ty. elim: ty Delta sigma h => {Gamma A B} Gamma...
move=> h ty. elim: ty Delta sigma h => {A B} Gamma...
- move=> x A lt _ ih Delta sigma h /=. apply: sub_trans (h _ lt) _. exact: ih.
- move=> A1 A2 B1 B2 _ ih1 _ ih2 Delta sigma h /=. apply: sub_all...
apply: ih2 => -[_|x /h/sub_weak]. apply: sub_var_trans => //. autosubst.
Expand Down Expand Up @@ -247,7 +247,7 @@ Proof with eauto using ty.
apply. move=> [_|x/h/sub_weak] /=. apply: sub_var_trans => //. autosubst.
autosubst.
- move=> Delta1 Gamma A B C s _ ih sub Delta2 sigma h. asimpl.
eapply ty_etapp. Focus 2. by eapply ih. autosubst. exact: sub_subst sub.
eapply ty_etapp. 2: { by eapply ih. } autosubst. exact: sub_subst sub.
- move=> Delta1 Gamma A B s _ ih sub Delta2 sigma h.
eapply ty_sub. by eapply ih. exact: sub_subst sub.
Qed.
Expand Down Expand Up @@ -354,7 +354,7 @@ Definition is_tabs s := if s is TAbs _ _ then true else false.
Lemma canonical_arr' Delta Gamma s T A B :
TY Delta;Gamma |- s : T -> SUB Delta |- T <: Arr A B -> value s -> is_abs s.
Proof.
move=> ty. elim: ty A B => //={Delta Gamma s T} Delta Gamma A B s.
move=> ty. elim: ty A B => //= {Gamma s T} Delta Gamma A B s.
- move=> ty _ A' B' sub. by inv sub.
- move=> _ ih /sub_trans h A' B' /h. exact: ih.
Qed.
Expand All @@ -368,7 +368,7 @@ Qed.
Lemma canonical_all' Delta Gamma s T A B :
TY Delta;Gamma |- s : T -> SUB Delta |- T <: All A B -> value s -> is_tabs s.
Proof.
move=> ty. elim: ty A B => //={Delta Gamma s T} Delta Gamma A B s.
move=> ty. elim: ty A B => //= {Gamma s T} Delta Gamma A B s.
- move=> _ _ A' B' sub. by inv sub.
- move=> _ ih /sub_trans h A' B' /h. exact: ih.
Qed.
Expand Down
8 changes: 4 additions & 4 deletions examples/ssr/SystemF_CBV.v
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ Inductive eval : term -> term -> Prop :=
eval (Abs A s) (Abs A s)
| eval_tabs (A : term) :
eval (TAbs A) (TAbs A).
Global Hint Resolve eval_abs eval_tabs.
Global Hint Resolve eval_abs eval_tabs : core.

(** **** Syntactic typing *)

Expand Down Expand Up @@ -92,11 +92,11 @@ Notation E A rho := (L (V A rho)).

Lemma V_value A rho v : V A rho v -> eval v v.
Proof. by elim: A => [x[]|A _ B _/=[A'[s->]]|A _/=[s->]]. Qed.
Global Hint Resolve V_value.
Global Hint Resolve V_value : core.

Lemma V_to_E A rho v : V A rho v -> E A rho v.
Proof. exists v; eauto. Qed.
Global Hint Resolve V_to_E.
Global Hint Resolve V_to_E : core.

Lemma eq_V A rho1 rho2 v :
(forall X v, eval v v -> (rho1 X v <-> rho2 X v)) -> V A rho1 v -> V A rho2 v.
Expand All @@ -119,7 +119,7 @@ Proof.
(do 2 eexists) => // t /ih1/h[u ev]/ih2 ih; by exists u.
- move=> A ih rho s xi; asimpl.
split=> -[s' -> h]; eexists => //; asimpl=> P B; move: {h} (h P B) => [v ev].
+ move=> /ih {ih} ih. exists v => //. by asimpl in ih.
+ move=> /ih {} ih. exists v => //. by asimpl in ih.
+ move=> h. exists v => //. apply/ih. autosubst.
Qed.

Expand Down
8 changes: 4 additions & 4 deletions examples/ssr/SystemF_SN.v
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ Definition admissible (rho : nat -> cand) :=

Lemma reducible_sn : reducible sn.
Proof. constructor; eauto using ARS.sn. by move=> s t [f] /f. Qed.
Global Hint Resolve reducible_sn.
Global Hint Resolve reducible_sn : core.

Lemma reducible_var P x : reducible P -> P (TeVar x).
Proof. move/p_nc. apply=> // t st. inv st. Qed.
Expand All @@ -216,7 +216,7 @@ Proof with eauto using step.
eapply h. eapply reducible_var; eauto.
+ move=> s t h st u la. apply: (p_cl _ (s := App s u))...
+ move=> s ns h t la. have snt := p_sn (ih1 _ safe) la.
elim: snt la => {t} t _ ih3 la. apply: p_nc... move=> v st. inv st=> //...
elim: snt la => {} t _ ih3 la. apply: p_nc... move=> v st. inv st=> //...
apply: ih3 => //. exact: (p_cl (ih1 _ safe)) la _.
- constructor.
+ move=> s /(_ sn (TyVar 0) reducible_sn)/p_sn/sn_tclosed; apply.
Expand Down Expand Up @@ -251,7 +251,7 @@ Lemma beta_expansion A B rho s t :
L A rho (App (Abs B s) t).
Proof with eauto.
move=> ad snt h. have sns := sn_subst (L_sn ad h).
elim: sns t snt h => {s} s sns ih1 t. elim=> {t} t snt ih2 h.
elim: sns t snt h => {} s sns ih1 t. elim=> {} t snt ih2 h.
apply: L_nc => // u st. inv st => //.
- inv H2. apply: ih1 => //. apply: L_cl ad h _. exact: step_subst.
- apply: ih2 => //. apply: L_cl_star ad h _. exact: red_beta.
Expand All @@ -261,7 +261,7 @@ Lemma inst_expansion A B rho s :
admissible rho -> L A rho s.|[B/] -> L A rho (TApp (TAbs s) B).
Proof.
move=> ad h. have sns := sn_hsubst (L_sn ad h). elim: sns h.
move=> {s} s _ ih h. apply: L_nc => // t st. inv st => //.
move=> {} s _ ih h. apply: L_nc => // t st. inv st => //.
inv H2 => //. apply: ih => //. apply: L_cl ad h _. exact: step_hsubst.
Qed.

Expand Down
12 changes: 6 additions & 6 deletions examples/ssr/pred_CC_omega.v
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ Fixpoint rho (s : term) : term :=

Lemma pstep_refl s : pstep s s.
Proof. elim: s; eauto using pstep. Qed.
Global Hint Resolve pstep_refl.
Global Hint Resolve pstep_refl : core.

Lemma step_pstep s t : step s t -> pstep s t.
Proof. elim; eauto using pstep. Qed.
Expand Down Expand Up @@ -206,13 +206,13 @@ Proof.
apply: (cr_method (e2 := pstep) (rho := rho)).
exact: step_pstep. exact: pstep_red. exact: rho_triangle.
Qed.
Global Hint Resolve church_rosser.
Global Hint Resolve church_rosser : core.

(** **** Reduction behaviour *)

Lemma normal_step_sort n : normal step (Sort n).
Proof. move=> [s st]. inv st. Qed.
Global Hint Resolve normal_step_sort.
Global Hint Resolve normal_step_sort : core.

CoInductive RedProdSpec A1 B1 : term -> Prop :=
| RedProdSpecI A2 B2 : red A1 A2 -> red B1 B2 -> RedProdSpec A1 B1 (Prod A2 B2).
Expand Down Expand Up @@ -264,7 +264,7 @@ Proof. move/conv_sub1. apply. exact: sub1_refl. Qed.

Lemma sub_refl A : A <: A.
Proof. apply: sub1_sub. exact: sub1_refl. Qed.
Global Hint Resolve sub_refl.
Global Hint Resolve sub_refl : core.

Lemma sub_sort n m : n <= m -> Sort n <: Sort m.
Proof. move=> leq. exact/sub1_sub/sub1_sort. Qed.
Expand Down Expand Up @@ -368,7 +368,7 @@ Notation "[ Gamma |- s ]" := (exists n, [ Gamma |- s :- Sort n ]).

Lemma ty_sort_wf Gamma n : [ Gamma |- Sort n ].
Proof. exists n.+1. exact: ty_sort. Qed.
Global Hint Resolve ty_sort_wf ty_sort.
Global Hint Resolve ty_sort_wf ty_sort : core.

Lemma ty_prod_wf Gamma A B :
[ Gamma |- A ] -> [ A :: Gamma |- B ] -> [ Gamma |- Prod A B ].
Expand Down Expand Up @@ -419,7 +419,7 @@ Proof. move=>->->. exact: weakening. Qed.
Lemma ty_ok Gamma :
[ Gamma |- ] -> forall x, x < size Gamma -> [ Gamma |- Gamma`_x ].
Proof.
elim=> // {Gamma} Gamma A n tp _ ih [_|x /ih [{n tp} n tp]];
elim=> // {} Gamma A n tp _ ih [_|x /ih [{tp} n tp]];
exists n; exact: weakening tp.
Qed.

Expand Down

0 comments on commit c41b7dc

Please sign in to comment.