-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
2,688 additions
and
0 deletions.
There are no files selected for viewing
446 changes: 446 additions & 0 deletions
446
...ntConfusionMatrixPrecisionAndRecall/Implement-Confusion-Matrix-Precision-and-Recall.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
354 changes: 354 additions & 0 deletions
354
machinelearning/classificationPerformanceMeasures/02-F1Score/F1Score.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## F1 Score" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"collapsed": true, | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.255143Z", | ||
"start_time": "2024-09-16T01:49:01.213811Z" | ||
} | ||
}, | ||
"source": [ | ||
"import numpy as np" | ||
], | ||
"outputs": [], | ||
"execution_count": 1 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"collapsed": true, | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.259777Z", | ||
"start_time": "2024-09-16T01:49:01.256712Z" | ||
} | ||
}, | ||
"source": [ | ||
"def f1_score(precision, recall):\n", | ||
" try:\n", | ||
" return 2 * precision * recall / (precision + recall)\n", | ||
" except:\n", | ||
" return 0.0" | ||
], | ||
"outputs": [], | ||
"execution_count": 2 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.265857Z", | ||
"start_time": "2024-09-16T01:49:01.261297Z" | ||
} | ||
}, | ||
"source": [ | ||
"precision = 0.5\n", | ||
"recall = 0.5\n", | ||
"f1_score(precision, recall)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.5" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 3 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.271443Z", | ||
"start_time": "2024-09-16T01:49:01.267247Z" | ||
} | ||
}, | ||
"source": [ | ||
"precision = 0.1\n", | ||
"recall = 0.9\n", | ||
"f1_score(precision, recall)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.18000000000000002" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 4 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.277461Z", | ||
"start_time": "2024-09-16T01:49:01.274094Z" | ||
} | ||
}, | ||
"source": [ | ||
"precision = 0.0\n", | ||
"recall = 1.0\n", | ||
"f1_score(precision, recall)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.0" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 5 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"collapsed": true, | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.737431Z", | ||
"start_time": "2024-09-16T01:49:01.278368Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn import datasets\n", | ||
"\n", | ||
"digits = datasets.load_digits()\n", | ||
"X = digits.data\n", | ||
"y = digits.target.copy()\n", | ||
"\n", | ||
"y[digits.target==9] = 1\n", | ||
"y[digits.target!=9] = 0" | ||
], | ||
"outputs": [], | ||
"execution_count": 6 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"collapsed": true, | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.778433Z", | ||
"start_time": "2024-09-16T01:49:01.738455Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.model_selection import train_test_split\n", | ||
"\n", | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)" | ||
], | ||
"outputs": [], | ||
"execution_count": 7 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.838414Z", | ||
"start_time": "2024-09-16T01:49:01.779238Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.linear_model import LogisticRegression\n", | ||
"\n", | ||
"log_reg = LogisticRegression()\n", | ||
"log_reg.fit(X_train, y_train)\n", | ||
"# 准确率\n", | ||
"log_reg.score(X_test, y_test)" | ||
], | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/opt/anaconda3/envs/myenv3.10/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):\n", | ||
"STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", | ||
"\n", | ||
"Increase the number of iterations (max_iter) or scale the data as shown in:\n", | ||
" https://scikit-learn.org/stable/modules/preprocessing.html\n", | ||
"Please also refer to the documentation for alternative solver options:\n", | ||
" https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", | ||
" n_iter_i = _check_optimize_result(\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.9755555555555555" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 8 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"collapsed": true, | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.842496Z", | ||
"start_time": "2024-09-16T01:49:01.839572Z" | ||
} | ||
}, | ||
"source": [ | ||
"y_predict = log_reg.predict(X_test)" | ||
], | ||
"outputs": [], | ||
"execution_count": 9 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.848941Z", | ||
"start_time": "2024-09-16T01:49:01.843599Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.metrics import confusion_matrix\n", | ||
"\n", | ||
"confusion_matrix(y_test, y_predict)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[403, 2],\n", | ||
" [ 9, 36]])" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 10 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.857132Z", | ||
"start_time": "2024-09-16T01:49:01.850617Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.metrics import precision_score\n", | ||
"\n", | ||
"precision_score(y_test, y_predict)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"np.float64(0.9473684210526315)" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 11 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.864113Z", | ||
"start_time": "2024-09-16T01:49:01.858452Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.metrics import recall_score\n", | ||
"\n", | ||
"recall_score(y_test, y_predict)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"np.float64(0.8)" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 12 | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-09-16T01:49:01.870655Z", | ||
"start_time": "2024-09-16T01:49:01.865342Z" | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.metrics import f1_score\n", | ||
"\n", | ||
"f1_score(y_test, y_predict)" | ||
], | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"np.float64(0.8674698795180723)" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"execution_count": 13 | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.