Skip to content

Commit

Permalink
高数
Browse files Browse the repository at this point in the history
  • Loading branch information
cr-mao committed Sep 4, 2024
1 parent 1aa8df4 commit b7bde55
Show file tree
Hide file tree
Showing 7 changed files with 46 additions and 2 deletions.
Binary file added math/images/math_18.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/images/math_19.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/images/math_20.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/images/math_21.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/images/math_22.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/images/math_23.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
48 changes: 46 additions & 2 deletions math/高等数学.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@

非集合例子
- 100个同批次同型号的乒乓球。 无法区别(元素互异性)
- 一个城市的好人(不确定性)

集合中的元素是坐标系中的点

Expand Down Expand Up @@ -608,13 +607,27 @@ lim |f(x0+h)-f(x0) | = lim | f'(x0)h+@(h)h | =0 ,h->0
- 法线的斜率 = -1/ 切线的斜率


#### 函数的可到性与连续性的关系

可导必连续

```text
lim △y/△x = f'(x) 存在,因此必有△y/△x = f'(x)+α,其中 lim α=0
△x->0 △x->0
△y=f'(x)△x+ α△x ,△x->0 , △y->0
所有函数f=f(x)在点x连续
```

f(x)在点x可导,那么在x点必连续。

y=|x| ,在x=0处连续,但不可导。



### 常见函数的导数
![](images/math_11.png)
![](images/math_19.png)


### 导数四则元算
Expand All @@ -630,6 +643,37 @@ lim |f(x0+h)-f(x0) | = lim | f'(x0)h+@(h)h | =0 ,h->0

y=1 就是极小值



### 高阶导数

变速直线运动 s=s(t)

速度v = ds/dt 或 v=s'

加速度 a=dv/dt = d (ds/dt)/dt 或 a=(s')'

s对t的二阶导数,记作 d^2 . s / dt^2 或 s''(t)

![](images/math_20.png)


定义若函数y=f(x)的导数y'=f'(x) 可导,则称f'(x)的导数为f(x)的二阶导数,记作 y'' , (y')'

y''',y(4),y(n) n阶导数。


莱布尼茲公式
### 隐函数的导数
![](images/math_21.png)
![](images/math_22.png)

### 幂指函数求导法则

两边取对数(对数求导法)

![](images/math_23.png)

### 偏导
多元函数求导, 把其他变量都看作常数

Expand Down

0 comments on commit b7bde55

Please sign in to comment.