Skip to content

cvjena/cs_parts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

L1-SVM based parts extraction

Code for the paper "Classification-Specific Parts for Improving Fine-Grained Visual Categorization"

Installation

Clone the repository and initialize the submodules

git clone [email protected]:cvjena/cs_parts.git
cd cs_parts
git submodule init
git submodule update

python3.7

conda env create -n cs_parts python~=3.7.0
conda activate cs_parts
conda install -c conda-forge -c nvidia cudatoolkit=11.0.3 \
 cudatoolkit-dev=11.0.3 nccl cudnn

pip install --no-cache-dir cupy-cuda110~=7.8.0
python -c "import cupy; cupy.show_config(); print(cupy.zeros(8) + 1)"
# should display something like this:
# CuPy Version          : 7.8.0
# CUDA Root             : /home/korsch/.miniconda3/envs/cs_parts
# CUDA Build Version    : 11000
# CUDA Driver Version   : 12000
# CUDA Runtime Version  : 11000
# cuBLAS Version        : 11200
# cuFFT Version         : 10201
# cuRAND Version        : 10201
# cuSOLVER Version      : (10, 6, 0)
# cuSPARSE Version      : 11101
# NVRTC Version         : (11, 0)
# cuDNN Build Version   : 8002
# cuDNN Version         : 8201
# NCCL Build Version    : 2708
# NCCL Runtime Version  : 2708
# CUB Version           : Enabled
# cuTENSOR Version      : None
# [1. 1. 1. 1. 1. 1. 1. 1.]
pip install -r requirements.txt

python3.9

conda env create -n cs_parts python~=3.9.0
conda activate cs_parts
conda install -c conda-forge -c nvidia cudatoolkit=11.0.3 \
 cudatoolkit-dev=11.0.3 nccl cudnn

# installs cupy version 7.8.0.post1 directly from source, since the
# wheels are only built for python3.7
pip install --no-cache-dir -e git+https://github.com/cupy/cupy.git@3e3635d802eda54a4b8c96d0126c646e97c3d239#egg=cupy
python -c "import cupy; cupy.show_config(); print(cupy.zeros(8) + 1)"
# should display something like this:
# CuPy Version          : 7.8.0
# CUDA Root             : /home/korsch/.miniconda3/envs/cs_parts
# CUDA Build Version    : 11000
# CUDA Driver Version   : 12000
# CUDA Runtime Version  : 11000
# cuBLAS Version        : 11200
# cuFFT Version         : 10201
# cuRAND Version        : 10201
# cuSOLVER Version      : (10, 6, 0)
# cuSPARSE Version      : 11101
# NVRTC Version         : (11, 0)
# cuDNN Build Version   : 8002
# cuDNN Version         : 8201
# NCCL Build Version    : 2708
# NCCL Runtime Version  : 2708
# CUB Version           : Enabled
# cuTENSOR Version      : None
# [1. 1. 1. 1. 1. 1. 1. 1.]
pip install -r requirements.txt

Running the experiments

Download the datasets and models

  1. Download the needed datasets. Set up the according paths in the data_info.yml file.
  2. Download the fine-tuned models or copy your own models to the models folder

Start an experiment

You could either start the whole pipeline for the default dataset (CUB200):

./run.sh

or set according datasets (and GPUs) manually:

GPU=0 DATASET=NAB ./run.sh
GPU=1 DATASETS=FLOWERS ./run.sh
GPU=1 BATCH_SIZE=16 DATASETS=CARS ./run.sh

The extracted features (features.npz), the trained L1-SVM, and part locations (part_locs.txt) will be stored in outputs/<DATASET>/<MODEL_TYPE>/<timestamp> folder.

You can also restart the experiment using already extracted features and/or trained L1-SVM by setting the --checkpoint parameter, e.g.:

./run.sh --checkpoint outputs/CUB200/cvmodelz.InceptionV3/2023-10-05-11.27.16.471332713

Citation

You are welcome to use our code in your research! If you do so please cite it as:

@inproceedings{Korsch19_CSPARTS,
  title = {Classification-Specific Parts for Improving Fine-Grained Visual Categorization},
  booktitle = {German Conference on Pattern Recognition (GCPR)},
  author = {Dimitri Korsch and Paul Bodesheim and Joachim Denzler},
  pages = {62--75},
  year = {2019},
}

License

This work is licensed under a GNU Affero General Public License.

AGPLv3

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published