-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4b1f410
commit 3509af3
Showing
2 changed files
with
181 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
## SymCP algorithms | ||
|
||
@testitem "gradients-fullsym" begin | ||
using GCPDecompositions: | ||
GCPAlgorithms.LBFGSB, | ||
default_constraints, | ||
default_init_sym, | ||
GCPLosses.LeastSquares, | ||
GCPLosses.grad_U!, | ||
SymCPD | ||
using LinearAlgebra: norm | ||
import ForwardDiff | ||
|
||
function form_fullsym_M(U::Matrix{T}) where {T} | ||
sz = size(U)[1] | ||
M = zeros(T, sz, sz, sz) | ||
for i1 in axes(U, 1), i2 in axes(U, 1), i3 in axes(U, 1) | ||
M[i1, i2, i3] = sum(U[i1, :] .* U[i2, :] .* U[i3, :]) | ||
end | ||
return M | ||
end | ||
|
||
@testset "r=$r, sz=$sz" for r in [1, 2, 5], sz in [3, 10, 50] | ||
|
||
# Form fully symmetric rank-1 tensor | ||
U_star = randn(sz, r) | ||
X = zeros(sz, sz, sz) | ||
for i1 in axes(U_star, 1), i2 in axes(U_star, 1), i3 in axes(U_star, 1) | ||
X[i1, i2, i3] = sum(U_star[i1, :] .* U_star[i2, :] .* U_star[i3, :]) | ||
end | ||
|
||
# Check that computed and autodiff gradients at solution = 0 | ||
loss = LeastSquares() | ||
constraints = default_constraints(loss) | ||
algorithm = LBFGSB() | ||
S = (1, 1, 1) | ||
|
||
M_star = SymCPD(ones(r), (U_star,), (1, 1, 1)) | ||
@test maximum([M_star[I] - X[I] for I in CartesianIndices(X)]) == 0.0 | ||
|
||
GU = (similar(M_star.U[1]),) | ||
computed_grad_solution = grad_U!(GU, M_star, X, loss, false)[1] # Without using simplified form for symmetric data | ||
computed_grad_solution_simplified = grad_U!(GU, M_star, X, loss, true)[1] # With using simplified form for symmetric data | ||
@test computed_grad_solution == | ||
zeros(eltype(computed_grad_solution), size(computed_grad_solution)) | ||
@test computed_grad_solution_simplified == zeros( | ||
eltype(computed_grad_solution_simplified), | ||
size(computed_grad_solution_simplified), | ||
) | ||
|
||
objective(U) = norm(X - form_fullsym_M(U))^2 | ||
auto_grad_solution = ForwardDiff.gradient(objective, M_star.U[1]) | ||
@test auto_grad_solution == | ||
zeros(eltype(auto_grad_solution), size(auto_grad_solution)) | ||
|
||
# Check gradients at random init compared to autodiff | ||
init = default_init_sym(X, r, loss, constraints, algorithm, S) | ||
M0 = deepcopy(init) | ||
GU = (similar(M0.U[1]),) | ||
|
||
computed_grad = grad_U!(GU, M0, X, loss, false)[1] | ||
computed_grad_simplified = grad_U!(GU, M0, X, loss, true)[1] | ||
|
||
auto_grad = ForwardDiff.gradient(objective, M0.U[1]) | ||
|
||
@test maximum([ | ||
abs(computed_grad[I] - auto_grad[I]) for I in CartesianIndices(auto_grad) | ||
]) <= 1e-6 | ||
@test maximum([ | ||
abs(computed_grad_simplified[I] - auto_grad[I]) for | ||
I in CartesianIndices(auto_grad) | ||
]) <= 1e-6 | ||
end | ||
end | ||
|
||
@testitem "gradients-partialsym" begin | ||
using GCPDecompositions: | ||
GCPAlgorithms.LBFGSB, | ||
symgcp, | ||
default_constraints, | ||
default_init_sym, | ||
GCPLosses.LeastSquares, | ||
ngroups, | ||
GCPLosses.grad_U!, | ||
convertCPD, | ||
SymCPD | ||
using LinearAlgebra: norm | ||
import ForwardDiff | ||
|
||
function form_partialsym_M(U1::Array{T}, U2::Array{T}) where {T} | ||
sz1 = size(U1)[1] | ||
sz2 = size(U2)[1] | ||
M = zeros(T, sz1, sz2, sz1) | ||
for i1 in axes(U1, 1), i2 in axes(U2, 1), i3 in axes(U1, 1) | ||
M[i1, i2, i3] = sum(U1[i1, :] .* U2[i2, :] .* U1[i3, :]) | ||
end | ||
return M | ||
end | ||
|
||
@testset "r=$r, sz1=$sz1, sz2=$sz2" for r in [1, 2, 5], sz1 in [3, 10, 50], sz2 in [5, 15, 40] | ||
|
||
# Form fully symmetric rank-1 tensor | ||
U1_star = randn(sz1, r) | ||
U2_star = randn(sz2, r) | ||
X = zeros(sz1, sz2, sz1) | ||
for i1 in axes(U1_star, 1), i2 in axes(U2_star, 1), i3 in axes(U1_star, 1) | ||
X[i1, i2, i3] = sum(U1_star[i1, :] .* U2_star[i2, :] .* U1_star[i3, :]) | ||
end | ||
|
||
# Check that computed and autodiff gradients at solution = 0 | ||
loss = LeastSquares() | ||
constraints = default_constraints(loss) | ||
algorithm = LBFGSB() | ||
S = (1, 2, 1) | ||
|
||
M_star = SymCPD(ones(r), (U1_star, U2_star), (1, 2, 1)) | ||
@test maximum([M_star[I] - X[I] for I in CartesianIndices(X)]) == 0.0 | ||
|
||
GU = (similar(M_star.U[1]), similar(M_star.U[2])) | ||
computed_grad_solution_U1, computed_grad_solution_U2 = | ||
grad_U!(GU, M_star, X, loss, false) | ||
computed_grad_solution_simplified_U1, computed_grad_solution_simplified_U2 = | ||
grad_U!(GU, M_star, X, loss, true) | ||
@test computed_grad_solution_U1 == | ||
zeros(eltype(computed_grad_solution_U1), size(computed_grad_solution_U1)) | ||
@test computed_grad_solution_simplified_U1 == zeros( | ||
eltype(computed_grad_solution_simplified_U1), | ||
size(computed_grad_solution_simplified_U1), | ||
) | ||
|
||
U1_sz = size(M_star.U[1]) | ||
U2_sz = size(M_star.U[2]) | ||
function vectorized_objective(U_vec::Vector) | ||
# Unflatten | ||
U1 = reshape(U_vec[1:prod(U1_sz)], U1_sz) | ||
U2 = reshape(U_vec[prod(U1_sz)+1:end], U2_sz) | ||
return norm(X - form_partialsym_M(U1, U2))^2 | ||
end | ||
vectorized_auto_grad_solution = ForwardDiff.gradient( | ||
vectorized_objective, | ||
vcat(vec(M_star.U[1]), vec(M_star.U[2])), | ||
) | ||
# Unflatten | ||
U1_auto_grad_solution = reshape(vectorized_auto_grad_solution[1:prod(U1_sz)], U1_sz) | ||
U2_auto_grad_solution = | ||
reshape(vectorized_auto_grad_solution[prod(U1_sz)+1:end], U2_sz) | ||
|
||
@test U1_auto_grad_solution == | ||
zeros(eltype(U1_auto_grad_solution), size(U1_auto_grad_solution)) | ||
@test U2_auto_grad_solution == | ||
zeros(eltype(U2_auto_grad_solution), size(U2_auto_grad_solution)) | ||
|
||
# Check gradients at random init compared to autodiff | ||
init = default_init_sym(X, r, loss, constraints, algorithm, S) | ||
M0 = deepcopy(init) | ||
GU = (similar(M0.U[1]), similar(M0.U[2])) | ||
|
||
computed_grad_U1, computed_grad_U2 = grad_U!(GU, M0, X, loss, false) | ||
computed_grad_simplified_U1, computed_grad_simplified_U2 = grad_U!(GU, M0, X, loss, true) | ||
|
||
vectorized_auto_grad = | ||
ForwardDiff.gradient(vectorized_objective, vcat(vec(M0.U[1]), vec(M0.U[2]))) | ||
# Unflatten | ||
U1_auto_grad = reshape(vectorized_auto_grad[1:prod(U1_sz)], U1_sz) | ||
U2_auto_grad = reshape(vectorized_auto_grad[prod(U1_sz)+1:end], U2_sz) | ||
|
||
@test maximum([ | ||
abs(computed_grad_U1[I] - U1_auto_grad[I]) for I in CartesianIndices(U1_auto_grad) | ||
]) <= 1e-6 | ||
@test maximum([ | ||
abs(computed_grad_U2[I] - U2_auto_grad[I]) for I in CartesianIndices(U2_auto_grad) | ||
]) <= 1e-6 | ||
@test maximum([ | ||
abs(computed_grad_simplified_U1[I] - U1_auto_grad[I]) for I in CartesianIndices(U1_auto_grad) | ||
]) <= 1e-6 | ||
@test maximum([ | ||
abs(computed_grad_simplified_U2[I] - U2_auto_grad[I]) for I in CartesianIndices(U2_auto_grad) | ||
]) <= 1e-6 | ||
end | ||
end |