Skip to content

Day 5 - Simple Predictions: Regression and Statistical Model Building

License

Notifications You must be signed in to change notification settings

dan-pull/05-simple-predictions

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Core skills program - week 3 - Simple predictions, regression and statistical model building

Binder

The aim of today's session will be to introduce simple linear regression as the basis for prediction, and discuss the factors that alter its accuracy and effectiveness. We'll move onto more complex linear regression situations and show how even some non-linear datasets can be used with linear regression, and then we'll show how these tools can also be used classification problems. We will make our first machine learning models in this session.

You should aim to understand the basics of regression and outliers, how regression models can be limited by statistical assumptions about the data and how to recognise when these assumptions are being violated. You'll should also understand the principle of Occam's Razor and how to choose between basic statistical models while evaluating their effectiveness.

While linear regression is something you've most certainly encountered before, we'll be framing much of today's work in the language and approaches of machine learning, which will be applicable over the next few weeks.

Pre-session Reading & Resources

Todo: there is no pre-reading at this time, but after the session we'll add resources that will be of value to you. Please browse through them before next week.

About

Day 5 - Simple Predictions: Regression and Statistical Model Building

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%