-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_gpt.py
389 lines (351 loc) · 17.8 KB
/
train_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import matplotlib
if os.path.expandvars("$MACHINE_NAME") in ["leonhard", "euler"]:
matplotlib.use('agg')
import logging
import os
import math
import time
from datetime import datetime
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from pyniel.python_tools.path_tools import make_dir_if_not_exists
from strictfire import StrictFire
from navrep.models.gpt import GPT, GPTConfig, save_checkpoint, set_seed
from navrep.tools.wdataset import WorldModelDataset, scans_to_lidar_obs
from navrep.tools.test_worldmodel import mse
from navdreams.auto_debug import enable_auto_debug
def gpt_worldmodel_error(gpt, test_dataset_folder, device, batch_size=128):
sequence_size = gpt.module.block_size
# load dataset
seq_loader = WorldModelDataset(test_dataset_folder, sequence_size, lidar_mode="images",
channel_first=True, as_torch_tensors=True, file_limit=64)
batch_loader = DataLoader(seq_loader, shuffle=False, batch_size=batch_size)
# iterate over batches
batch_loader = tqdm(batch_loader, total=len(batch_loader))
n_batches = 0
sum_state_error = 0
sum_lidar_error = 0
for x, a, y, x_rs, y_rs, dones in batch_loader:
# place data on the correct device
x = x.to(device)
x_rs = x_rs.to(device)
a = a.to(device)
y = y.to(device)
y_rs = y_rs.to(device)
dones = dones.to(device)
y_pred_rec, y_rs_pred, _ = gpt(x, x_rs, a, dones)
y_pred_rec = y_pred_rec.detach().cpu().numpy()
y_rs_pred = y_rs_pred.detach().cpu().numpy()
sum_lidar_error += mse(y_pred_rec, y.cpu().numpy()) # because binary cross entropy is inf for 0
sum_state_error += mse(y_rs_pred, y_rs.cpu().numpy()) # mean square error loss
n_batches += 1
lidar_error = sum_lidar_error / n_batches
state_error = sum_state_error / n_batches
return lidar_error, state_error
_Z = _H = 64
_S = 32 # sequence length
class N3DWorldModelDataset(WorldModelDataset):
""" same as a WorldModelDataset, but data regeneration is specialized for navrep3d """
def _partial_regen(self, n_new_sequences=1, build_name=None):
print("Partial regen disabled.")
return # Disabled since making a larger dataset is more straightforward
from navrep.scripts.make_vae_dataset import generate_vae_dataset, SemiRandomMomentumPolicy
from navdreams.navrep3danyenv import NavRep3DAnyEnv
if self.regen in ["S", "SC", "Salt", "SCR", "R"]:
if build_name is None:
if self.regen == "S":
build_name = "./build.x86_64"
elif self.regen == "Salt":
build_name = "./alternate.x86_64"
elif self.regen == "SC":
build_names = ["./alternate.x86_64", "./city.x86_64", "./office.x86_64"]
build_name = np.random.choice(build_names)
elif self.regen == "SCR":
build_names = [
"./alternate.x86_64", "./city.x86_64", "./office.x86_64", "staticasl", "rosbag"]
build_name = np.random.choice(build_names)
elif self.regen == "R":
build_names = ["staticasl", "rosbag"]
build_name = np.random.choice(build_names)
else:
raise NotImplementedError
try:
env = NavRep3DAnyEnv(verbose=0, collect_statistics=False,
build_name=build_name, port=25005+np.random.randint(10),
tolerate_corruption=False, difficulty_mode="random")
policy = SemiRandomMomentumPolicy()
data = generate_vae_dataset(
env, n_sequences=n_new_sequences, policy=policy,
render=False, archive_dir=None)
except: # noqa
print("Failed to regenerate dataset {}. retrying.".format(build_name))
self._partial_regen(n_new_sequences=n_new_sequences, build_name=build_name)
return
if self.pre_convert_obs:
data["obs"] = scans_to_lidar_obs(
data["scans"], self.lidar_mode, self.rings_def, self.channel_first)
else:
print("Regen for {} is not implemented".format(self.regen))
return
for k in self.data.keys():
N = len(data[k]) # should be the same for each key
# check end inside loop to avoid having to pick an arbitrary key
if self.regen_head_index + N > len(self.data[k]):
self.regen_head_index = 0
# replace data
i = self.regen_head_index
self.data[k][i : i + N] = data[k]
print("Regenerated {} steps of {}".format(N, build_name))
self.regen_head_index += N
def main(max_steps=222222, dataset="S", dry_run=False):
START_TIME = datetime.now().strftime("%Y_%m_%d__%H_%M_%S")
# note that the "S" dataset in the paper is called "Salt" in the code, due to naming collision
# with a legacy "S" dataset
if dataset == "S_old":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dtrain")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_S_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_S")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_S_step")
elif dataset == "S":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dalt")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_Salt_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_Salt")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_Salt_step")
elif dataset == "SC":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dtrain"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dcity"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3doffice")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_SC_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_SC")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_SC_step")
elif dataset == "Random":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dalt")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_Random_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_Random")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_Random_step")
max_steps = 0
elif dataset == "SCR":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dalt"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dcity"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3doffice"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dasl"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/rosbag")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_SCR_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_SCR")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_SCR_step")
elif dataset == "R":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dasl"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/rosbag")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_R_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_R")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_R_step")
elif dataset == "K":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dkozehd"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/rosbag")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_K_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_K")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_K_step")
elif dataset == "K2":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dkozehdr"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/rosbag")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_K2_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_K2")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_K2_step")
elif dataset == "SCRK":
dataset_dir = [os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dalt"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dcity"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3doffice"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3daslv2"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/navrep3dkozehdr"),
os.path.expanduser("~/navdreams_data/wm_experiments/datasets/V/rosbag")]
log_path = os.path.expanduser(
"~/navdreams_data/wm_experiments/logs/W/transformer_SCRK2_train_log_{}.csv".format(START_TIME))
checkpoint_path = os.path.expanduser("~/navdreams_data/wm_experiments/models/W/transformer_SCRK2")
plot_path = os.path.expanduser("~/tmp_navrep3d/transformer_SCRK2_step")
else:
raise NotImplementedError(dataset)
if dry_run:
log_path = log_path.replace(os.path.expanduser("~/navdreams_data"), "/tmp/navdreams_data")
checkpoint_path = checkpoint_path.replace(os.path.expanduser("~/navdreams_data"), "/tmp/navdreams_data")
make_dir_if_not_exists(os.path.dirname(checkpoint_path))
make_dir_if_not_exists(os.path.dirname(log_path))
make_dir_if_not_exists(os.path.expanduser("~/tmp_navrep3d"))
# make deterministic
set_seed(42)
# set up logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
mconf = GPTConfig(_S, _H)
mconf.image_channels = 3
train_dataset = N3DWorldModelDataset(
dataset_dir, _S,
pre_convert_obs=False,
regen=dataset,
lidar_mode="images",
)
if len(train_dataset) == 0:
raise ValueError("No training data found")
if dry_run:
train_dataset._partial_regen()
# training params
# optimization parameters
max_epochs = max_steps # don't stop based on epoch
batch_size = 128
learning_rate = 6e-4
betas = (0.9, 0.95)
grad_norm_clip = 1.0
lr_decay = True # learning rate decay params: linear warmup followed by cosine decay to 10% of original
weight_decay = 0.1 # only applied on matmul weights
warmup_tokens = 512 * 20
final_tokens = 200 * len(train_dataset) * _S
num_workers = 0 # for DataLoader
# create model
model = GPT(mconf)
print("GPT trainable params: {}".format(
sum(p.numel() for p in model.parameters() if p.requires_grad)))
# increase stddev in random model weights
if dataset == "Random":
def randomize_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.2)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
model.apply(randomize_weights)
# take over whatever gpus are on the system
device = "cpu"
if torch.cuda.is_available():
device = torch.cuda.current_device()
model = torch.nn.DataParallel(model).to(device)
# create the optimizer
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)
]
params_nodecay = [
p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)
]
optim_groups = [
{"params": params_decay, "weight_decay": weight_decay},
{"params": params_nodecay, "weight_decay": 0.0},
]
optimizer = optim.AdamW(optim_groups, lr=learning_rate, betas=betas)
global_step = 0
tokens = 0 # counter used for learning rate decay
values_logs = None
start = time.time()
for epoch in range(max_epochs):
is_train = True
model.train(is_train)
loader = DataLoader(
train_dataset,
shuffle=is_train,
batch_size=batch_size,
num_workers=num_workers,
)
losses = []
pbar = tqdm(enumerate(loader), total=len(loader)) if is_train else enumerate(loader)
for it, (x, a, y, x_rs, y_rs, dones) in pbar:
global_step += 1
# place data on the correct device
x = x.to(device)
x_rs = x_rs.to(device)
a = a.to(device)
y = y.to(device)
y_rs = y_rs.to(device)
dones = dones.to(device)
# forward the model
with torch.set_grad_enabled(is_train):
y_pred, y_rs_pred, loss = model(x, x_rs, a, dones, targets=(y, y_rs))
loss = (
loss.mean()
) # collapse all losses if they are scattered on multiple gpus
losses.append(loss.item())
if is_train:
# backprop and update the parameters
model.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm_clip)
optimizer.step()
# decay the learning rate based on our progress
if lr_decay:
tokens += (
a.shape[0] * a.shape[1]
) # number of tokens processed this step
if tokens < warmup_tokens:
# linear warmup
lr_mult = float(tokens) / float(max(1, warmup_tokens))
else:
# cosine learning rate decay
progress = float(tokens - warmup_tokens) / float(
max(1, final_tokens - warmup_tokens)
)
lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress)))
lr = learning_rate * lr_mult
for param_group in optimizer.param_groups:
param_group["lr"] = lr
else:
lr = learning_rate
# report progress
pbar.set_description(
f"epoch {epoch}: train loss {loss.item():.5f}. lr {lr:e}"
)
if global_step == 1 or global_step % 1000 == 0:
# save plot
from matplotlib import pyplot as plt
plt.figure("training_status")
plt.clf()
plt.suptitle("training step {}".format(global_step))
f, axes = plt.subplots(3, 5, num="training_status", sharex=True, sharey=True)
for i, (ax0, ax1, ax2) in enumerate(axes.T):
ax0.imshow(np.moveaxis(x.cpu().numpy()[0, 5 + i], 0, -1))
ax1.imshow(np.moveaxis(y.cpu().numpy()[0, 5 + i], 0, -1))
ax2.imshow(np.moveaxis(y_pred.detach().cpu().numpy()[0, 5 + i], 0, -1))
ax2.set_xlabel("Done {}".format(dones.cpu()[0, 5 + 1]))
plt.savefig(plot_path + "{:07}.png".format(global_step))
lidar_e = None
state_e = None
if epoch % 20 == 0:
lidar_e, state_e = gpt_worldmodel_error(model, dataset_dir, device)
save_checkpoint(model, checkpoint_path)
# log
end = time.time()
time_taken = end - start
start = time.time()
values_log = pd.DataFrame(
[[global_step, loss.item(), lidar_e, state_e, time_taken]],
columns=["step", "cost", "lidar_test_error", "state_test_error", "train_time_taken"],
)
if values_logs is None:
values_logs = values_log.copy()
else:
values_logs = values_logs.append(values_log, ignore_index=True)
if log_path is not None:
values_logs.to_csv(log_path)
if not is_train:
logger.info("test loss: %f", np.mean(losses))
if global_step >= max_steps:
break
print("Final evaluation")
lidar_e, state_e = gpt_worldmodel_error(model, dataset_dir, device)
save_checkpoint(model, checkpoint_path)
if __name__ == "__main__":
enable_auto_debug()
StrictFire(main)