-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathArpaLM.py
432 lines (396 loc) · 12.6 KB
/
ArpaLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# -*- coding:utf-8 -*-
# Copyright (c) 2006 Carnegie Mellon University
#
# You may copy and modify this freely under the same terms as
# Sphinx-III
"""
====================================================================
* Copyright (c) 1999-2001 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
"""
"""Read ARPA-format language models.
This module provides a class for reading, writing, and using ARPA
format statistical language model files.
"""
#__author__ = "David Huggins-Daines <[email protected]>"
#__version__ = "$Revision: 19 $"
from collections import defaultdict
import numpy
import gzip
import re
import os
LOG10TOLOG = numpy.log(10)
LOGTOLOG10 = 1./LOG10TOLOG
INF = -99 * LOG10TOLOG
class ArpaLM(object):
"Class for reading ARPA-format language models"
class NGram(object):
"""
Representation of a single N-Gram (only used for iteration)
@ivar words: List of words
@type words: tuple(str)
@ivar log_prob: Log probability in base e
@type log_prob: float
@ivar log_bowt: Log backoff weight in base e
@type log_bowt: float
"""
__slots__ = ['words', 'log_prob', 'log_bowt']
def __init__(self, words, log_prob=0, log_bowt=0):
self.words = words
self.log_prob = log_prob
self.log_bowt = log_bowt
def __init__(self, path=None, lw=1.0, wip=1.0):
"""
Initialize an ArpaLM object.
@param path: Path to an ARPA format file to (optionally) load
language model from. This file can be
gzip-compressed if you like.
@type path: string
"""
if path != None:
self.read(path)
self.lw = lw
self.wip = wip
self.log_wip = numpy.log(wip)
def read(self, path):
"""
Load an ARPA format language model from a file in its entirety.
@param path: Path to an ARPA format file to (optionally) load
language model from. This file can be
gzip-compressed if you like.
@type path: string
"""
try:
fh = gzip.open(path)
fh.readline()
fh.seek(0,0)
except:
fh = file(path)
# Skip header
while True:
spam = fh.readline().rstrip()
if spam == "\\data\\":
break
# Get N-gram counts
self.ng_counts = {}
r = re.compile(r"ngram (\d+)=(\d+)")
while True:
spam = fh.readline().rstrip()
if spam == "":
break
m = r.match(spam)
if m != None:
n, c = map(int, m.groups())
self.ng_counts[n] = c
# Word and N-Gram to ID mapping
self.ngmap = []
# Create probability/backoff arrays
self.n = max(self.ng_counts.keys())
self.ngrams = []
for n in range(1,self.n+1):
vals = numpy.zeros((self.ng_counts[n], 2),'d')
self.ngrams.append(vals)
self.ngmap.append({})
# Read unigrams and create word id list
spam = fh.readline().rstrip()
if spam != "\\1-grams:":
raise Exception, "1-grams marker not found"
# ID to word mapping
self.widmap = []
wordid = 0
while True:
spam = fh.readline().rstrip()
if spam == "":
break
try:
p,w,b = spam.split()
except ValueError: #hack - if backoff not present is 0.0
p,w = spam.split()
b = 0
self.ngmap[0][w] = wordid
self.widmap.append(w)
self.ngrams[0][wordid,:] = (float(p) * LOG10TOLOG,
float(b) * LOG10TOLOG)
wordid = wordid + 1
# Read N-grams
r = re.compile(r"\\(\d+)-grams:")
ngramid = 0
# Successor list map
self.succmap = {}
while True:
spam = fh.readline().rstrip()
if spam == "":
continue
if spam == "\\end\\":
break
m = r.match(spam)
if m != None:
n = int(m.group(1))
ngramid = 0
else:
spam = spam.split()
p = float(spam[0]) * LOG10TOLOG
if len(spam) == n + 2:
ng = tuple(spam[1:-1])
b = float(spam[-1]) * LOG10TOLOG
elif len(spam) == n + 1:
ng = tuple(spam[1:])
b = 0.0
else:
raise RuntimeError, "Found %d-gram in %d-gram section" % (len(spam)-1, n)
# N-Gram info
self.ngrams[n-1][ngramid,:] = p, b
self.ngmap[n-1][ng] = ngramid
# Successor list for N-1-Gram
mgram = tuple(ng[:-1])
if mgram not in self.succmap:
self.succmap[mgram] = []
self.succmap[mgram].append(ng[-1])
ngramid = ngramid + 1
def get_size(self):
"""
Get the order (i.e. N) of this N-Gram model.
@return: Order of this model.
@rtype: int
"""
return len(self.ngmap)
def save(self, path):
"""
Save an ARPA format language model to a file.
@param path: Path to save the file to. If this ends in '.gz',
the file contents will be gzip-compressed.
@type path: string
"""
if path.endswith('.gz'):
fh = gzip.open(path, 'w')
else:
fh = open(path, 'w')
fh.write("# Written by arpalm.py\n")
fh.write("\\data\\\n")
for n in range(1, self.n+1):
fh.write("ngram %d=%d\n" % (n, self.ng_counts[n]))
for n in range(1, self.n+1):
fh.write("\n\\%d-grams:\n" % n)
ngrams = self.ngmap[n-1].keys()
ngrams.sort()
if '<unk>' in self.ngmap[n-1]:
ngid = self.ngmap[n-1]['<unk>']
score, bowt = self.ngrams[n-1][ngid]
score *= LOGTOLOG10
bowt *= LOGTOLOG10
if n == self.n:
fh.write("%.4f <unk>\n" % (score))
else:
fh.write("%.4f <unk>\t%.4f\n" % (score,bowt))
for g in ngrams:
if g == '<unk>':
continue
ngid = self.ngmap[n-1][g]
score, bowt = self.ngrams[n-1][ngid]
score *= LOGTOLOG10
bowt *= LOGTOLOG10
if n > 1:
g = " ".join(g)
if n == self.n:
fh.write("%.4f %s\n" % (score, g))
else:
fh.write("%.4f %s\t%.4f\n" % (score, g, bowt))
fh.write("\n\\end\\\n")
fh.close()
def ngram(self, word, *hist):
"""
Get the N-gram record for word with given history.
As with prob() and score(), the history is given in reverse order.
"""
syms = tuple(reversed((word,) + hist))
if len(syms) == 1:
ngid = self.ngmap[0][syms[0]]
else:
ngid = self.ngmap[len(syms)-1][syms]
return self.NGram(syms, *self.ngrams[len(syms)-1][ngid])
def mgrams(self, m):
"""
Return an iterator over N-Grams of order M+1.
@param m: Length of history (i.e. order-1) of desired N-Grams.
@type m: int
@return: Iterator over N-Grams
@rtype: generator(NGram)
"""
for ng, ngid in self.ngmap[m].iteritems():
if isinstance(ng, str):
ng = (ng,)
yield self.NGram(ng, *self.ngrams[m][ngid,:])
def successor_words(self, words):
"""
Return all successor words for a word-tuple
@param words: A sequence of words.
@type words: sequence of words
@return: A generator over successor words
@rtype: generator(str)
"""
if isinstance(words, str):
words = (words,)
else:
words = tuple(words)
if words in self.succmap:
for w in self.succmap[words]:
yield w
def successors(self, ng):
"""
Return all successors for an M-Gram
@param ng: An Ngram as returned by mgrams()
@type ng: NGram
@return: An iterator over all (M+1)-Gram successors to ng.
@rtype: generator(NGram)
"""
if ng.words in self.succmap:
for w in self.succmap[ng.words]:
succ = ng.words + (w,)
ngid = self.ngmap[len(succ)-1][succ]
yield self.NGram(ng.words + (w,),
*self.ngrams[len(succ)-1][ngid])
def score(self, *syms):
p = self.prob(*syms)
return p * self.lw + self.log_wip
def prob(self, *syms):
"""
Return the language model log-probability for an N-Gram
(passed in reverse order, possibly with extra history)
@return: The log probability for the N-Gram consisting of the
words given, in base e (natural log).
@rtype: float
"""
syms = syms[0 : min(len(syms), self.n)]
# It makes the most sense to do this recursively
n = len(syms)
if n == 1:
if syms[0] in self.ngmap[0]:
# 1-Gram exists, just return its probability
return self.ngrams[0][self.ngmap[0][syms[0]]][0]
elif '<unk>' in self.ngmap[0]:
# Use <unk>
return self.ngrams[0][self.ngmap[0]['<unk>']][0]
else:
#raise IndexError, "ARPA LM: found OOV word %s" % syms[0]
#print "ARPA LM: found OOV word %s" % syms[0]
return INF
else:
# Forward N-gram (since syms is reversed)
fsyms = tuple(reversed(syms))
if fsyms in self.ngmap[n-1]:
# N-Gram exists, just return its probability
return self.ngrams[n-1][self.ngmap[n-1][fsyms]][0]
else:
# Backoff: alpha(history) * probability (N-1-Gram)
fhist = fsyms[:-1]
# New N-1 gram symbols (reversed order)
syms = syms[:-1]
# Treat unigram histories a bit specially
if len(fhist) == 1:
fhist = fhist[0]
# Try to back off to <unk> if word doesn't exist -
# if this is a closed vocab model this will just
# return the unigram prob for syms[0]
if not fhist in self.ngmap[0]:
fhist = '<unk>'
if fhist in self.ngmap[n-2]:
# Try to use the history if it exists
bowt = self.ngrams[n-2][self.ngmap[n-2][fhist]][1]
return bowt + self.prob(*syms)
else:
# Otherwise back off some more
return self.prob(*syms)
def adapt_rescale(self, unigram, vocab=None):
"""Update unigram probabilities with unigram (assumed to be in
linear domain), then rescale N-grams ending with the same word
by the corresponding factors. If unigram is not the same size
as the original vocabulary, you must pass vocab, which is a
list of the words in unigram, in the same order as their
probabilities are listed in unigram."""
if vocab:
# Construct a temporary list mapping for the unigrams
vmap = map(lambda w: self.ngmap[0][w], vocab)
# Get the original unigrams
og = numpy.exp(self.ngrams[0][:,0].take(vmap))
# Compute the individual scaling factors
ascale = unigram * og.sum() / og
# Put back the normalized version of unigram
self.ngrams[0][:,0].put(numpy.log(unigram * og.sum()), vmap)
# Now reconstruct vocab as a dictionary mapping words to
# scaling factors
vv = {}
for i, w in enumerate(vocab):
vv[w] = i
vocab = vv
else:
ascale = unigram / numpy.exp(self.ngrams[0][:,0])
self.ngrams[0][:,0] = numpy.log(unigram)
for n in range(1, self.n):
# Total discounted probabilities for each history
tprob = numpy.zeros(self.ngrams[n-1].shape[0], 'd')
# Rescaled total probabilities
newtprob = numpy.zeros(self.ngrams[n-1].shape[0], 'd')
# For each N-gram, accumulate and rescale
for ng,idx in self.ngmap[n].iteritems():
h = ng[0:-1]
if n == 1: # Quirk of unigrams
h = h[0]
w = ng[-1]
prob = numpy.exp(self.ngrams[n][idx,0])
tprob[self.ngmap[n-1][h]] += prob
if vocab == None or w in vocab:
prob = prob * ascale[vocab[w]]
newtprob[self.ngmap[n-1][h]] += prob
self.ngrams[n][idx,0] = numpy.log(prob)
# Now renormalize everything
norm = tprob / newtprob
for ng,idx in self.ngmap[n].iteritems():
h = ng[0:-1]
if n == 1: # Quirk of unigrams
h = h[0]
w = ng[-1]
prob = numpy.exp(self.ngrams[n][idx,0])
self.ngrams[n][idx,0] = numpy.log(prob * norm[self.ngmap[n-1][h]])
def getProbability(self, history, word):
#history.append(word)
ctx = history[::-1]
return LOGTOLOG10 * self.prob(*ctx)
if __name__ == "__main__":
a = ArpaLM(path="train.srilm")
txt = "a related provision that benefits multinational companies expires in august nineteen eighty seven"
txt = "to make them directly comparable each index is based on the close of nineteen sixty nine equaling one hundred"
text = txt.split()
for w in range(1, len(text)):
print a.getProbability(text[:w], text[w])