Skip to content

The work presented was developed during the internship, as researchers in the field of Natural Language Generation, at the Insid&s Lab laboratory in Milan-Bicocca. The work carried out deals with the creation of a framework for the correct assessment of the impact of the quality of the input datasets on the quality of the text generated by the N…

Notifications You must be signed in to change notification settings

dariodellamura/NLG-The-impact-of-data-quality-on-automatic-text-generation-from-RDF-data

Repository files navigation

NLG-The-impact-of-data-quality-on-automatic-text-generation-from-RDF-data

Authors: Dario Della Mura - David Doci

Il lavoro presentato è stato sviluppato nel corso dell'attività di stage, come ricercatori nel campo della Natural Language Generation, presso il laboratorio Insid&s Lab di Milano-Bicocca. Il lavoro svolto si occupa della creazione un framework per la corretta valutazione dell'impatto della qualità dei dataset di input sulla qualità del testo generato dai modelli di NLG, nello specifico:

  1. Creazione delle versioni "Concept-Based" e "Entity-Based" del dataset di WebNLG;
  2. Valutazione della qualità dei dataset creati;
  3. Addestramento dei modelli LSTM e Transformer mediante l'utilizzo del tool OpenNMT;
  4. Generazione del testo in linguaggio naturale effettuato dai modelli LSTM e Transformer;
  5. Valutazione della qualità del testo generato dai modelli NLG;
  6. Analisi finali.

Per ricevere il materiale completo della tesi svolta contattarci alle seguenti email:

Dario Della Mura : [email protected] David Doci : [email protected]


The work presented was developed during the internship, as researchers in the field of Natural Language Generation, at the Insid&s Lab laboratory in Milan-Bicocca. The work carried out deals with the creation of a framework for the correct assessment of the impact of the quality of the input datasets on the quality of the text generated by the NLG models, specifically:

  1. Creation of the "Concept-Based" and "Entity-Based" versions of the WebNLG dataset;
  2. Evaluation of the quality of the datasets created;
  3. Training of LSTM and Transformer models using the OpenNMT tool;
  4. Natural language text generation by LSTM and Transformer models;
  5. Evaluation of the quality of the text generated by the NLG models;
  6. Final analysis.

To receive the complete material of your thesis please contact us at the following emails:

Dario Della Mura : [email protected] David Doci : [email protected]

About

The work presented was developed during the internship, as researchers in the field of Natural Language Generation, at the Insid&s Lab laboratory in Milan-Bicocca. The work carried out deals with the creation of a framework for the correct assessment of the impact of the quality of the input datasets on the quality of the text generated by the N…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published