Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

datetime_coercion rule #1194

Merged
merged 24 commits into from
Nov 27, 2023
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
95b5685
add preoptimizer and datetime_coercion rule
sarahyurick Jun 30, 2023
4941e81
fix pytest
sarahyurick Jul 3, 2023
b671ac1
add pytest
sarahyurick Jul 3, 2023
8abffcb
style
sarahyurick Jul 3, 2023
837cf50
check for math exprs
sarahyurick Jul 5, 2023
365e4d5
style
sarahyurick Jul 5, 2023
e9f7428
fix logic
sarahyurick Jul 6, 2023
7456f58
Merge branch 'main' into datetime_coercion
sarahyurick Jul 7, 2023
d3f5669
handle nested binaryexprs
sarahyurick Jul 7, 2023
868a536
remove whitespace
sarahyurick Jul 7, 2023
c01cf96
Merge branch 'main' into datetime_coercion
jdye64 Jul 11, 2023
5880c60
Merge branch 'main' into datetime_coercion
jdye64 Jul 20, 2023
289600c
temporarily remove sql.rs changes
sarahyurick Aug 17, 2023
26029e9
Merge branch 'main' into datetime_coercion
sarahyurick Aug 17, 2023
000ce69
readd preoptimizer logic
sarahyurick Aug 17, 2023
74fa8f7
Merge branch 'main' into datetime_coercion
sarahyurick Aug 30, 2023
6fe5d2d
Merge branch 'main' into datetime_coercion
sarahyurick Nov 7, 2023
2c0894f
Merge branch 'main' into datetime_coercion
sarahyurick Nov 13, 2023
36c310a
Merge branch 'main' into datetime_coercion
sarahyurick Nov 13, 2023
b3ccedd
use with_new_exprs
sarahyurick Nov 13, 2023
4f1317e
Merge branch 'datetime_coercion' of https://github.com/sarahyurick/da…
sarahyurick Nov 13, 2023
f1a30e1
style
sarahyurick Nov 13, 2023
e7d5c4e
Merge branch 'main' into datetime_coercion
sarahyurick Nov 14, 2023
55ba5ce
Merge remote-tracking branch 'upstream/main' into datetime_coercion
charlesbluca Nov 15, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion dask_sql/context.py
Original file line number Diff line number Diff line change
Expand Up @@ -829,7 +829,8 @@ def _get_ral(self, sql):
# Optimize the `LogicalPlan` or skip if configured
if dask_config.get("sql.optimize"):
try:
rel = self.context.optimize_relational_algebra(nonOptimizedRel)
rel = self.context.run_preoptimizer(nonOptimizedRel)
rel = self.context.optimize_relational_algebra(rel)
except DFOptimizationException as oe:
# Use original plan and warn about inability to optimize plan
rel = nonOptimizedRel
Expand Down
13 changes: 13 additions & 0 deletions src/sql.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ pub mod function;
pub mod logical;
pub mod optimizer;
pub mod parser_utils;
pub mod preoptimizer;
pub mod schema;
pub mod statement;
pub mod table;
Expand Down Expand Up @@ -70,6 +71,7 @@ use crate::{
show_tables::ShowTablesPlanNode,
PyLogicalPlan,
},
preoptimizer::datetime_coercion,
},
};

Expand Down Expand Up @@ -559,6 +561,17 @@ impl DaskSQLContext {
.map_err(py_parsing_exp)
}

pub fn run_preoptimizer(
&self,
existing_plan: logical::PyLogicalPlan,
) -> PyResult<logical::PyLogicalPlan> {
if let Some(plan) = datetime_coercion(&existing_plan.original_plan) {
Ok(plan.into())
} else {
Ok(existing_plan)
}
}

/// Accepts an existing relational plan, `LogicalPlan`, and optimizes it
/// by applying a set of `optimizer` trait implementations against the
/// `LogicalPlan`
Expand Down
212 changes: 212 additions & 0 deletions src/sql/preoptimizer.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
use std::collections::HashMap;

use datafusion_python::{
datafusion::arrow::datatypes::{DataType, TimeUnit},
datafusion_common::{Column, DFField, ScalarValue},
datafusion_expr::{
logical_plan::Filter,
utils::from_plan,
BinaryExpr,
Expr,
LogicalPlan,
Operator,
},
};

// Sometimes, DataFusion's optimizer will raise an OptimizationException before we even get the
// chance to correct it anywhere. In these cases, we can still modify the LogicalPlan as an
// optimizer rule would, however we have to run it independently, separately of DataFusion's
// optimization framework. Ideally, these "pre-optimization" rules aren't performing any complex
// logic, but rather "pre-processing" the LogicalPlan for the optimizer. For example, the
// datetime_coercion preoptimizer rule fixes a bug involving Timestamp-Int operations.

// Helper function for datetime_coercion rule, which returns a vector of columns and literals
// involved in a (possibly nested) BinaryExpr mathematical expression, and the mathematical
// BinaryExpr itself
fn extract_columns_and_literals(expr: &Expr) -> Vec<(Vec<Expr>, Expr)> {
let mut result = Vec::new();
if let Expr::BinaryExpr(b) = expr {
let left = *b.left.clone();
let right = *b.right.clone();
if let Operator::Plus
| Operator::Minus
| Operator::Multiply
| Operator::Divide
| Operator::Modulo = &b.op
{
let mut operands = Vec::new();
if let Expr::Column(_) | Expr::Literal(_) = left.clone() {
operands.push(left);
} else {
let vector_of_vectors = extract_columns_and_literals(&left);
let mut flattened = Vec::new();
for vector in vector_of_vectors {
flattened.extend(vector.0);
}
operands.append(&mut flattened);
}

if let Expr::Column(_) | Expr::Literal(_) = right.clone() {
operands.push(right);
} else {
let vector_of_vectors = extract_columns_and_literals(&right);
let mut flattened = Vec::new();
for vector in vector_of_vectors {
flattened.extend(vector.0);
}
operands.append(&mut flattened);
}

result.push((operands, expr.clone()));
} else {
if let Expr::BinaryExpr(_) = left {
result.append(&mut extract_columns_and_literals(&left));
}

if let Expr::BinaryExpr(_) = right {
result.append(&mut extract_columns_and_literals(&right));
}
}
}
result
}

// Helper function for datetime_coercion rule, which uses a LogicalPlan's schema to obtain the
// datatype of a desired column
fn find_data_type(column: Column, fields: Vec<DFField>) -> Option<DataType> {
for field in fields {
if let Some(qualifier) = field.qualifier() {
if column.relation.is_some()
&& qualifier.table() == column.relation.clone().unwrap().table()
&& field.field().name() == &column.name
{
return Some(field.field().data_type().clone());
}
}
}
None
}

// Helper function for datetime_coercion rule, which, given a BinaryExpr and a HashMap in which the
// key represents a Literal and the value represents a Literal to replace the key with, returns the
// modified BinaryExpr
fn replace_literals(expr: Expr, replacements: HashMap<Expr, Expr>) -> Expr {
match expr {
Expr::Literal(l) => {
if let Some(new_literal) = replacements.get(&Expr::Literal(l.clone())) {
new_literal.clone()
} else {
Expr::Literal(l)
}
}
Expr::BinaryExpr(b) => {
let left = replace_literals(*b.left, replacements.clone());
let right = replace_literals(*b.right, replacements);
Expr::BinaryExpr(BinaryExpr {
left: Box::new(left),
op: b.op,
right: Box::new(right),
})
}
_ => expr,
}
}

// Helper function for datetime_coercion rule, which, given a BinaryExpr expr and a HashMap in
// which the key represents a BinaryExpr and the value represents a BinaryExpr to replace the key
// with, returns the modified expr
fn replace_binary_exprs(expr: Expr, replacements: HashMap<Expr, Expr>) -> Expr {
match expr {
Expr::BinaryExpr(b) => {
if let Some(new_expr) = replacements.get(&Expr::BinaryExpr(b.clone())) {
new_expr.clone()
} else {
let left = replace_binary_exprs(*b.left, replacements.clone());
let right = replace_binary_exprs(*b.right, replacements);
Expr::BinaryExpr(BinaryExpr {
left: Box::new(left),
op: b.op,
right: Box::new(right),
})
}
}
_ => expr,
}
}

// Preoptimization rule which detects when the user is trying to perform a binary operation on a
// datetime and an integer, then converts the integer to a IntervalMonthDayNano. For example, if we
// have a date_col + 5, we assume that we are adding 5 days to the date_col
pub fn datetime_coercion(plan: &LogicalPlan) -> Option<LogicalPlan> {
match plan {
LogicalPlan::Filter(f) => {
let filter_expr = f.predicate.clone();
let columns_and_literals = extract_columns_and_literals(&filter_expr);

let mut days_to_nanoseconds: Vec<(Expr, HashMap<Expr, Expr>)> = Vec::new();
for vector in columns_and_literals.iter() {
// Detect whether a timestamp is involved in the operation
let mut is_timestamp_operation = false;
for item in vector.0.iter() {
if let Expr::Column(column) = item {
if let Some(DataType::Timestamp(TimeUnit::Nanosecond, _)) =
find_data_type(column.clone(), plan.schema().fields().clone())
{
is_timestamp_operation = true;
}
}
}

// Convert an integer to an IntervalMonthDayNano
if is_timestamp_operation {
let mut find_replace = HashMap::new();
for item in vector.0.iter() {
if let Expr::Literal(ScalarValue::Int64(i)) = item {
let ns = i.unwrap() as i128 * 18446744073709552000;

find_replace.insert(
Expr::Literal(ScalarValue::Int64(*i)),
Expr::Literal(ScalarValue::IntervalMonthDayNano(Some(ns))),
);
}
}
days_to_nanoseconds.push((vector.1.clone(), find_replace));
}
}

let mut binary_exprs = HashMap::new();
for replacements in days_to_nanoseconds.iter() {
binary_exprs.insert(
replacements.0.clone(),
replace_literals(replacements.0.clone(), replacements.1.clone()),
);
}
let new_filter = replace_binary_exprs(filter_expr, binary_exprs);
Some(LogicalPlan::Filter(
Filter::try_new(new_filter, f.input.clone()).unwrap(),
))
}
_ => optimize_children(plan.clone()),
}
}

// Function used to iterate through a LogicalPlan and update it accordingly
fn optimize_children(existing_plan: LogicalPlan) -> Option<LogicalPlan> {
let plan = existing_plan.clone();
let new_exprs = plan.expressions();
let mut new_inputs = Vec::with_capacity(plan.inputs().len());
let mut plan_is_changed = false;
for input in plan.inputs() {
// Since datetime_coercion is the only preoptimizer rule that we have at the moment, we
// hardcode it here. If additional preoptimizer rules are added in the future, this can be
// modified
let new_input = datetime_coercion(input);
plan_is_changed = plan_is_changed || new_input.is_some();
new_inputs.push(new_input.unwrap_or_else(|| input.clone()))
}
if plan_is_changed {
Some(from_plan(&plan, &new_exprs, &new_inputs).ok()?)
} else {
Some(existing_plan)
}
}
31 changes: 31 additions & 0 deletions tests/integration/test_rex.py
Original file line number Diff line number Diff line change
Expand Up @@ -1236,3 +1236,34 @@ def test_scalar_timestamps(c, gpu):
f"SELECT TIMESTAMPDIFF(DAY, CAST({scalar1} AS TIMESTAMP), CAST({scalar2} AS TIMESTAMP)) AS dt"
)
assert_eq(df3, expected_df)


def test_datetime_coercion(c):
d_table = pd.DataFrame(
{
"d_date": [
datetime(2023, 7, 1),
datetime(2023, 7, 5),
datetime(2023, 7, 10),
datetime(2023, 7, 15),
],
"x": [1, 2, 3, 4],
}
)
c.create_table("d_table", d_table)

df = c.sql(
"""
SELECT * FROM d_table d1, d_table d2
WHERE d2.x < d1.x + (1 + 2)
AND d2.d_date > d1.d_date + (2 + 3)
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The parentheses don't matter here. This is just to demonstrate that this PR can handle something like d1.d_date + 1, d1.d_date + 2 + 3, d1.d_date + 4 + 5 + 6, etc. for as many mathematical operands as the user provides.

"""
)
expected_df = c.sql(
"""
SELECT * FROM d_table d1, d_table d2
WHERE d2.x < d1.x + (1 + 2)
AND d2.d_date > d1.d_date + INTERVAL '5 days'
"""
)
assert_eq(df, expected_df)
Loading