Skip to content

data-gymnasia/data-science-cookiecutter

Repository files navigation

Brown Data Science Cookiecutter

This is a fork of the drivendata cookiecutter with some light modifications for use in Data Gymnasia and Brown DSI courses.

A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Requirements to use the cookiecutter template:


  • Python 3.5+
  • Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter

To start a new project, run:


cookiecutter https://github.com/data-gymnasia/data-science-cookiecutter

asciicast

The resulting directory structure


The directory structure of your new project looks like this:

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── raw            <- The original, immutable data dump.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── external       <- Other potentially relevant data from third-party sources.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── environment.yml    <- Reproducing the conda environment; 
│                         generated with `conda env export > environment.yml`
│
└── src                <- Source code for use in this project.
    ├── __init__.py    <- Makes src a Python module
    │
    ├── data           <- Scripts to download or generate data
    │   └── make_dataset.py
    │
    ├── features       <- Scripts to turn raw data into features for modeling
    │   └── build_features.py
    │
    ├── models         <- Scripts to train models and then use trained models to make
    │   │                 predictions
    │   ├── predict_model.py
    │   └── train_model.py
    │
    └── visualization  <- Scripts to create exploratory and results oriented visualizations
        └── visualize.py

About

A cookiecutter for data science projects

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published