-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2a97b46
commit 0848814
Showing
9 changed files
with
706 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +0,0 @@ | ||
# Placeholder for C:\Users\rolod\OneDrive\Documents\GitHub\ln1-public/docs/DEVELOPMENT_ENVIRONMENT.md | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +0,0 @@ | ||
# Placeholder for C:\Users\rolod\OneDrive\Documents\GitHub\ln1-public/docs/contributing/CONTRIBUTING.md | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# Compliance Patterns for LN1 Models | ||
|
||
This document outlines the compliance patterns and regulatory frameworks implemented in LN1 models to ensure adherence to legal and privacy standards while processing sensitive legal documents. | ||
|
||
## Core Compliance Patterns | ||
|
||
### Data Protection | ||
```python | ||
class DataProtectionPattern: | ||
def __init__(self): | ||
self.privacy_manager = PrivacyManager() | ||
self.encryption_handler = EncryptionHandler() | ||
self.access_controller = AccessController() | ||
|
||
def apply_protection(self, data): | ||
return { | ||
'anonymization': self.privacy_manager.anonymize(), | ||
'encryption': self.encryption_handler.encrypt(), | ||
'access_control': self.access_controller.restrict() | ||
} | ||
``` | ||
|
||
### Regulatory Frameworks | ||
|
||
**Supported Standards** | ||
- GDPR Compliance | ||
- HIPAA Requirements | ||
- CCPA Regulations | ||
- Industry-specific standards | ||
|
||
## Implementation Guidelines | ||
|
||
### Privacy-Preserving Patterns | ||
```python | ||
class PrivacyPattern: | ||
def implement_privacy(self): | ||
return { | ||
'data_minimization': self.minimize_data_collection(), | ||
'purpose_limitation': self.restrict_usage(), | ||
'storage_limitation': self.manage_retention(), | ||
'transparency': self.provide_transparency() | ||
} | ||
``` | ||
|
||
### Audit Mechanisms | ||
1. Automated compliance checks | ||
2. Regular audit logging | ||
3. Violation detection | ||
4. Remediation tracking | ||
|
||
## Model-Specific Compliance | ||
|
||
### Training Data Compliance | ||
```python | ||
class TrainingCompliance: | ||
def ensure_compliance(self, training_data): | ||
return { | ||
'data_source': self.verify_source(), | ||
'consent_status': self.check_consent(), | ||
'usage_rights': self.verify_rights(), | ||
'retention_policy': self.check_retention() | ||
} | ||
``` | ||
|
||
### Inference Privacy | ||
- Data anonymization | ||
- Secure computation | ||
- Result filtering | ||
- Access controls | ||
|
||
## Documentation Requirements | ||
|
||
### Compliance Documentation | ||
```python | ||
class ComplianceDoc: | ||
def generate_documentation(self): | ||
return { | ||
'privacy_impact': self.assess_privacy_impact(), | ||
'data_flow': self.document_data_flow(), | ||
'security_measures': self.list_security_measures(), | ||
'compliance_checks': self.detail_compliance_checks() | ||
} | ||
``` | ||
|
||
## Monitoring and Reporting | ||
|
||
### Compliance Monitoring | ||
```python | ||
class ComplianceMonitor: | ||
def monitor_compliance(self): | ||
return { | ||
'violation_detection': self.detect_violations(), | ||
'audit_logs': self.collect_audit_logs(), | ||
'performance_metrics': self.track_metrics(), | ||
'incident_reports': self.generate_reports() | ||
} | ||
``` | ||
|
||
### Reporting Requirements | ||
- Regular compliance reports | ||
- Incident documentation | ||
- Audit trail maintenance | ||
- Stakeholder communications | ||
|
||
## Security Integration | ||
|
||
### Security Patterns | ||
```python | ||
class SecurityPattern: | ||
def implement_security(self): | ||
return { | ||
'access_control': self.control_access(), | ||
'data_encryption': self.encrypt_data(), | ||
'secure_processing': self.secure_compute(), | ||
'audit_logging': self.log_activities() | ||
} | ||
``` | ||
|
||
## Error Handling | ||
|
||
### Compliance Violations | ||
```python | ||
class ViolationHandler: | ||
def handle_violation(self, violation): | ||
return { | ||
'detection': self.detect_violation(violation), | ||
'assessment': self.assess_impact(violation), | ||
'remediation': self.implement_fix(violation), | ||
'reporting': self.report_incident(violation) | ||
} | ||
``` | ||
|
||
## Testing Framework | ||
|
||
### Compliance Testing | ||
```python | ||
class ComplianceTester: | ||
def test_compliance(self): | ||
return { | ||
'privacy_tests': self.run_privacy_tests(), | ||
'security_tests': self.run_security_tests(), | ||
'regulatory_tests': self.verify_regulations(), | ||
'documentation_tests': self.validate_documentation() | ||
} | ||
``` | ||
|
||
## Integration Guidelines | ||
|
||
### System Integration | ||
- API compliance | ||
- Data flow controls | ||
- Security protocols | ||
- Audit integration | ||
|
||
### Deployment Requirements | ||
```python | ||
class ComplianceDeployment: | ||
def verify_deployment(self): | ||
return { | ||
'environment_check': self.check_environment(), | ||
'security_verification': self.verify_security(), | ||
'compliance_validation': self.validate_compliance(), | ||
'documentation_review': self.review_documentation() | ||
} | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# Precedent Graph Models | ||
|
||
The Precedent Graph system models legal relationships and citations as a directed graph, enabling sophisticated legal analysis and precedent tracking within the LN1 node network. | ||
|
||
## Graph Structure | ||
|
||
### Core Components | ||
```python | ||
class PrecedentGraph: | ||
def __init__(self): | ||
self.nodes = {} # Legal documents | ||
self.edges = {} # Citations and relationships | ||
self.metadata = MetadataManager() | ||
self.analyzer = GraphAnalyzer() | ||
``` | ||
|
||
### Node Properties | ||
```typescript | ||
interface DocumentNode { | ||
id: string; | ||
metadata: { | ||
title: string; | ||
jurisdiction: string; | ||
date: timestamp; | ||
court: string; | ||
status: string; | ||
}; | ||
relationships: { | ||
citations: string[]; | ||
references: string[]; | ||
overruled: string[]; | ||
} | ||
} | ||
``` | ||
|
||
## Graph Operations | ||
|
||
### Citation Analysis | ||
```python | ||
class CitationAnalyzer: | ||
def analyze_citations(self, document): | ||
return { | ||
'forward_citations': self.get_citing_documents(), | ||
'backward_citations': self.get_cited_documents(), | ||
'citation_strength': self.calculate_importance(), | ||
'citation_context': self.extract_context() | ||
} | ||
``` | ||
|
||
### Relationship Mapping | ||
- Direct citations | ||
- Indirect references | ||
- Overruling relationships | ||
- Related cases | ||
|
||
## Graph Algorithms | ||
|
||
### Path Analysis | ||
```python | ||
class PathAnalyzer: | ||
def analyze_precedent_path(self, start_node, end_node): | ||
return { | ||
'shortest_path': self.find_shortest_path(), | ||
'all_paths': self.find_all_paths(), | ||
'path_strength': self.calculate_path_strength(), | ||
'key_intermediates': self.identify_key_nodes() | ||
} | ||
``` | ||
|
||
### Centrality Metrics | ||
- PageRank implementation | ||
- Citation authority | ||
- Legal influence scoring | ||
- Node importance | ||
|
||
## Visualization | ||
|
||
### Graph Rendering | ||
```python | ||
class GraphVisualizer: | ||
def generate_visualization(self, graph_subset): | ||
return { | ||
'layout': self.calculate_layout(), | ||
'node_styling': self.style_nodes(), | ||
'edge_styling': self.style_edges(), | ||
'interactive_elements': self.add_interactivity() | ||
} | ||
``` | ||
|
||
### Interactive Features | ||
- Zoom and pan | ||
- Node filtering | ||
- Path highlighting | ||
- Relationship exploration | ||
|
||
## Data Integration | ||
|
||
### Document Processing | ||
```python | ||
class DocumentProcessor: | ||
def process_document(self, document): | ||
return { | ||
'extracted_citations': self.extract_citations(), | ||
'relationship_mapping': self.map_relationships(), | ||
'context_analysis': self.analyze_context(), | ||
'metadata_enrichment': self.enrich_metadata() | ||
} | ||
``` | ||
|
||
### Update Mechanisms | ||
- Real-time updates | ||
- Batch processing | ||
- Incremental changes | ||
- Version control | ||
|
||
## Analysis Tools | ||
|
||
### Legal Research | ||
```python | ||
class ResearchTools: | ||
def analyze_precedent(self, case_id): | ||
return { | ||
'authority_score': self.calculate_authority(), | ||
'citation_network': self.map_network(), | ||
'temporal_analysis': self.analyze_timeline(), | ||
'jurisdiction_mapping': self.map_jurisdictions() | ||
} | ||
``` | ||
|
||
### Impact Analysis | ||
- Citation frequency | ||
- Authority metrics | ||
- Temporal relevance | ||
- Jurisdiction spread | ||
|
||
## Performance Optimization | ||
|
||
### Graph Operations | ||
```python | ||
class GraphOptimizer: | ||
def optimize_operations(self): | ||
return { | ||
'index_optimization': self.optimize_indices(), | ||
'query_caching': self.implement_cache(), | ||
'batch_processing': self.optimize_batches(), | ||
'memory_management': self.manage_memory() | ||
} | ||
``` | ||
|
||
### Scaling Considerations | ||
- Distributed processing | ||
- Partition strategies | ||
- Cache management | ||
- Query optimization | ||
|
||
## Integration APIs | ||
|
||
### Query Interface | ||
```python | ||
class GraphAPI: | ||
def query_endpoints(self): | ||
return { | ||
'/graph/search': self.handle_search, | ||
'/graph/analyze': self.handle_analysis, | ||
'/graph/visualize': self.handle_visualization, | ||
'/graph/update': self.handle_updates | ||
} | ||
``` | ||
|
||
## Monitoring and Metrics | ||
|
||
### Performance Tracking | ||
```python | ||
class GraphMonitor: | ||
def track_metrics(self): | ||
return { | ||
'query_performance': self.measure_query_speed(), | ||
'graph_size': self.measure_graph_size(), | ||
'update_frequency': self.track_updates(), | ||
'usage_patterns': self.analyze_usage() | ||
} | ||
``` | ||
|
||
Remember to update this documentation as new features and improvements are implemented in the precedent graph system. |
Oops, something went wrong.