Skip to content

Commit

Permalink
Updates
Browse files Browse the repository at this point in the history
  • Loading branch information
rolodexter committed Nov 20, 2024
1 parent 2a97b46 commit 0848814
Show file tree
Hide file tree
Showing 9 changed files with 706 additions and 33 deletions.
1 change: 0 additions & 1 deletion docs/DEVELOPMENT_ENVIRONMENT.md
Original file line number Diff line number Diff line change
@@ -1 +0,0 @@
# Placeholder for C:\Users\rolod\OneDrive\Documents\GitHub\ln1-public/docs/DEVELOPMENT_ENVIRONMENT.md
1 change: 0 additions & 1 deletion docs/contributing/CONTRIBUTING.md
Original file line number Diff line number Diff line change
@@ -1 +0,0 @@
# Placeholder for C:\Users\rolod\OneDrive\Documents\GitHub\ln1-public/docs/contributing/CONTRIBUTING.md
166 changes: 166 additions & 0 deletions docs/models/compliance-patterns.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# Compliance Patterns for LN1 Models

This document outlines the compliance patterns and regulatory frameworks implemented in LN1 models to ensure adherence to legal and privacy standards while processing sensitive legal documents.

## Core Compliance Patterns

### Data Protection
```python
class DataProtectionPattern:
def __init__(self):
self.privacy_manager = PrivacyManager()
self.encryption_handler = EncryptionHandler()
self.access_controller = AccessController()

def apply_protection(self, data):
return {
'anonymization': self.privacy_manager.anonymize(),
'encryption': self.encryption_handler.encrypt(),
'access_control': self.access_controller.restrict()
}
```

### Regulatory Frameworks

**Supported Standards**
- GDPR Compliance
- HIPAA Requirements
- CCPA Regulations
- Industry-specific standards

## Implementation Guidelines

### Privacy-Preserving Patterns
```python
class PrivacyPattern:
def implement_privacy(self):
return {
'data_minimization': self.minimize_data_collection(),
'purpose_limitation': self.restrict_usage(),
'storage_limitation': self.manage_retention(),
'transparency': self.provide_transparency()
}
```

### Audit Mechanisms
1. Automated compliance checks
2. Regular audit logging
3. Violation detection
4. Remediation tracking

## Model-Specific Compliance

### Training Data Compliance
```python
class TrainingCompliance:
def ensure_compliance(self, training_data):
return {
'data_source': self.verify_source(),
'consent_status': self.check_consent(),
'usage_rights': self.verify_rights(),
'retention_policy': self.check_retention()
}
```

### Inference Privacy
- Data anonymization
- Secure computation
- Result filtering
- Access controls

## Documentation Requirements

### Compliance Documentation
```python
class ComplianceDoc:
def generate_documentation(self):
return {
'privacy_impact': self.assess_privacy_impact(),
'data_flow': self.document_data_flow(),
'security_measures': self.list_security_measures(),
'compliance_checks': self.detail_compliance_checks()
}
```

## Monitoring and Reporting

### Compliance Monitoring
```python
class ComplianceMonitor:
def monitor_compliance(self):
return {
'violation_detection': self.detect_violations(),
'audit_logs': self.collect_audit_logs(),
'performance_metrics': self.track_metrics(),
'incident_reports': self.generate_reports()
}
```

### Reporting Requirements
- Regular compliance reports
- Incident documentation
- Audit trail maintenance
- Stakeholder communications

## Security Integration

### Security Patterns
```python
class SecurityPattern:
def implement_security(self):
return {
'access_control': self.control_access(),
'data_encryption': self.encrypt_data(),
'secure_processing': self.secure_compute(),
'audit_logging': self.log_activities()
}
```

## Error Handling

### Compliance Violations
```python
class ViolationHandler:
def handle_violation(self, violation):
return {
'detection': self.detect_violation(violation),
'assessment': self.assess_impact(violation),
'remediation': self.implement_fix(violation),
'reporting': self.report_incident(violation)
}
```

## Testing Framework

### Compliance Testing
```python
class ComplianceTester:
def test_compliance(self):
return {
'privacy_tests': self.run_privacy_tests(),
'security_tests': self.run_security_tests(),
'regulatory_tests': self.verify_regulations(),
'documentation_tests': self.validate_documentation()
}
```

## Integration Guidelines

### System Integration
- API compliance
- Data flow controls
- Security protocols
- Audit integration

### Deployment Requirements
```python
class ComplianceDeployment:
def verify_deployment(self):
return {
'environment_check': self.check_environment(),
'security_verification': self.verify_security(),
'compliance_validation': self.validate_compliance(),
'documentation_review': self.review_documentation()
}
```

184 changes: 184 additions & 0 deletions docs/models/precedent-graphs.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Precedent Graph Models

The Precedent Graph system models legal relationships and citations as a directed graph, enabling sophisticated legal analysis and precedent tracking within the LN1 node network.

## Graph Structure

### Core Components
```python
class PrecedentGraph:
def __init__(self):
self.nodes = {} # Legal documents
self.edges = {} # Citations and relationships
self.metadata = MetadataManager()
self.analyzer = GraphAnalyzer()
```

### Node Properties
```typescript
interface DocumentNode {
id: string;
metadata: {
title: string;
jurisdiction: string;
date: timestamp;
court: string;
status: string;
};
relationships: {
citations: string[];
references: string[];
overruled: string[];
}
}
```

## Graph Operations

### Citation Analysis
```python
class CitationAnalyzer:
def analyze_citations(self, document):
return {
'forward_citations': self.get_citing_documents(),
'backward_citations': self.get_cited_documents(),
'citation_strength': self.calculate_importance(),
'citation_context': self.extract_context()
}
```

### Relationship Mapping
- Direct citations
- Indirect references
- Overruling relationships
- Related cases

## Graph Algorithms

### Path Analysis
```python
class PathAnalyzer:
def analyze_precedent_path(self, start_node, end_node):
return {
'shortest_path': self.find_shortest_path(),
'all_paths': self.find_all_paths(),
'path_strength': self.calculate_path_strength(),
'key_intermediates': self.identify_key_nodes()
}
```

### Centrality Metrics
- PageRank implementation
- Citation authority
- Legal influence scoring
- Node importance

## Visualization

### Graph Rendering
```python
class GraphVisualizer:
def generate_visualization(self, graph_subset):
return {
'layout': self.calculate_layout(),
'node_styling': self.style_nodes(),
'edge_styling': self.style_edges(),
'interactive_elements': self.add_interactivity()
}
```

### Interactive Features
- Zoom and pan
- Node filtering
- Path highlighting
- Relationship exploration

## Data Integration

### Document Processing
```python
class DocumentProcessor:
def process_document(self, document):
return {
'extracted_citations': self.extract_citations(),
'relationship_mapping': self.map_relationships(),
'context_analysis': self.analyze_context(),
'metadata_enrichment': self.enrich_metadata()
}
```

### Update Mechanisms
- Real-time updates
- Batch processing
- Incremental changes
- Version control

## Analysis Tools

### Legal Research
```python
class ResearchTools:
def analyze_precedent(self, case_id):
return {
'authority_score': self.calculate_authority(),
'citation_network': self.map_network(),
'temporal_analysis': self.analyze_timeline(),
'jurisdiction_mapping': self.map_jurisdictions()
}
```

### Impact Analysis
- Citation frequency
- Authority metrics
- Temporal relevance
- Jurisdiction spread

## Performance Optimization

### Graph Operations
```python
class GraphOptimizer:
def optimize_operations(self):
return {
'index_optimization': self.optimize_indices(),
'query_caching': self.implement_cache(),
'batch_processing': self.optimize_batches(),
'memory_management': self.manage_memory()
}
```

### Scaling Considerations
- Distributed processing
- Partition strategies
- Cache management
- Query optimization

## Integration APIs

### Query Interface
```python
class GraphAPI:
def query_endpoints(self):
return {
'/graph/search': self.handle_search,
'/graph/analyze': self.handle_analysis,
'/graph/visualize': self.handle_visualization,
'/graph/update': self.handle_updates
}
```

## Monitoring and Metrics

### Performance Tracking
```python
class GraphMonitor:
def track_metrics(self):
return {
'query_performance': self.measure_query_speed(),
'graph_size': self.measure_graph_size(),
'update_frequency': self.track_updates(),
'usage_patterns': self.analyze_usage()
}
```

Remember to update this documentation as new features and improvements are implemented in the precedent graph system.
Loading

0 comments on commit 0848814

Please sign in to comment.