William Henney - DAWGI Meeting - 2024-02-28
I will demonstrate a method for finding the orientation of the symmetry axis of an observed bow shock or other curved emission arc. The method consists in fitting a parabola (or ellipse, or hyperbola) to a set of points. A simple trick allows a suitable objective function to be defined without needing to explicitly calculate the distance of the points from the curve. The objective function can be minimized to find the best-fit conic section, and MCMC can be used to check for the presence of multiple local minima.
Voy a demostrar un método para encontrar la orientación del eje de simetría de un arco de emisión observado. El método consiste en ajustar una parábola (o elipse, o hipérbola) a un conjunto de puntos. Un truco simple permite definir una función objetivo adecuada sin necesidad de calcular explícitamente la distancia de los puntos a la curva. La función objetivo se puede minimizar para encontrar la mejor sección cónica de ajuste, y MCMC se puede utilizar para comprobar la presencia de múltiples mínimos locales.
Fitting conic sections to data: Parabolae, ellipses, and hyperbolae
I can give another talk later on Stage 1
And radio wavelengths too
For instance, we may wish to know the orientation in order to identify the exciting source, or to compare with the magnetic field direction, etc
No clear intuitive interpretation of A, B, C, etc
Focal radius r and directrix distance d are trivial to calculate
lmfit is for when astropy.modeling isn’t enough
The objective function calculates a vector of residuals, for which the Minimizer tries to minimize the sum of squares
By default it uses a Levenberg-Marquardt algorithm
This is a case where the covariance matrix underestimates the true uncertainties
Better to use a parabola when the number of data points is small