WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING - ICIP 2019
This repository shows implementation of Wavelet U-net for image dehazing. This work establishes the new network combining wavelet transrom for single image dehazing. We use RESIDEdataset for evaluation, and it outperforms the state-of-art algorithms.
WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
Hao-Hsiang Yang 1,2, Yanwei Fu 2
1 Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 2 School of Data Science, Fudan University, Shanghai, China
IEEE International Conference on Image Processing (ICIP), 2019
$ git clone https://github.com/dectrfov/Wavelet-U-net-Dehazing.git
$ cd Wavelet-U-net-Dehazing
2. Downloading the RESIDE dataset
We only use images in clear and haze folders All clear images are divided as training images (train_clear), testing images (train_hazy). The hazy images are placed to corresponding folders (val_clear and val_hazy).
$ CUDA_VISIBLE_DEVICES=0 python train.py --epochs 100 \
--lr 1e-4 \
--use_gpu true \
--gpu 0 \
--ori_data_path /train_clear/ \
--haze_data_path /train_hazy \
--val_ori_data_path /val_clear/ \
--val_haze_data_path /val_hazy/ \
--num_workers 4 \
--batch_size 40 \
--val_batch_size 4 \
--print_gap 500 \
--model_dir /model/ \
--log_dir /model/ \
--sample_output_folder /samples/ \
--net_name /dehaze_chromatic_
To test dehazing on RESIDE:
$ python demo.py --sample_output_folder samples/ \
--use_gpu true \
--gpu 0 \
--model_dir model/ \
--ckpt dehaze_chromatic_100.pkl
1. Download model
Download from googledrive and put it in the model folder
Place hazy images in the samples folder
$ python demo.py --sample_output_folder samples/ \
--use_gpu true \
--gpu 0 \
--model_dir model/ \
--ckpt dehaze_chromatic_100.pkl