Skip to content

deephyper/cbbo-benchmarks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

C-BBO benchmarks

Continuous Black-Box Optimization (C-BBO) benchmarks for DeepHyper.

Function Name Number of Dimensions Comment
ackley $\infty$ (default 5) Many local minima and single global optimum
branin 2 Three global optimum
cossin 1 Many local minima, good for visualisation.
easom 2 Almost flat everywhere
griewank $\infty$ (default 5)
hartmann6D 6
levy $\infty$ (default 5)
michal $\infty$ (default 2)
rosen $\infty$ (default 5)
schwefel $\infty$ (default 5)
shekel 4 Many local minima with flat areas

Installation

Python installation and dependency management is handled with uv. Clone this repository then create a Python environment with uv sync.

Usage

Go to the example directory and run the benchmarks with uv run benchmark cbbo.toml. Plot the results of the benchmarks with uv run benchmark cbbo.toml --plot.

About

C-BBO benchmarks for DeepHyper

Resources

Stars

Watchers

Forks

Languages