-
Notifications
You must be signed in to change notification settings - Fork 128
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bedrock] Added Amazon Bedrock examples (#635)
* add ChatGenerator example * add Generator, Embedders example * move system prompt from inference params to messages
- Loading branch information
Showing
2 changed files
with
110 additions
and
0 deletions.
There are no files selected for viewing
36 changes: 36 additions & 0 deletions
36
integrations/amazon_bedrock/examples/chatgenerator_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
# To run this example, you will need to | ||
# 1) set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY` and `AWS_DEFAULT_REGION` environment variables | ||
# 2) enable access to the selected model in Amazon Bedrock | ||
# Note: if you change the model, update the model-specific inference parameters. | ||
|
||
|
||
from haystack.dataclasses import ChatMessage | ||
|
||
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockChatGenerator | ||
|
||
generator = AmazonBedrockChatGenerator( | ||
model="anthropic.claude-3-haiku-20240307-v1:0", | ||
# model-specific inference parameters | ||
generation_kwargs={ | ||
"max_tokens": 500, | ||
"temperature": 0.0, | ||
}, | ||
) | ||
|
||
system_prompt = """ | ||
You are a helpful assistant that helps users learn more about AWS services. | ||
Your audience is engineers with a decent technical background. | ||
Be very concise and specific in your answers, keeping them short. | ||
You may use technical terms, jargon, and abbreviations that are common among practitioners. | ||
""" | ||
|
||
# Even though Anthropic Claud models support only messages with `user` and `assistant` roles, | ||
# internal handling converts message with `system` role into `system` inference parameter for Claude | ||
# which allows for more portablability of code across generators | ||
messages = [ | ||
ChatMessage.from_system(system_prompt), | ||
ChatMessage.from_user("Which service should I use to train custom Machine Learning models?"), | ||
] | ||
|
||
results = generator.run(messages) | ||
results["replies"] |
74 changes: 74 additions & 0 deletions
74
integrations/amazon_bedrock/examples/embedders_generator_with_rag_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# To run this example, you will need to | ||
# 1) set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY` and `AWS_DEFAULT_REGION` environment variables | ||
# 2) enable access to the selected model in Amazon Bedrock | ||
# Note: if you change the model, update the model-specific inference parameters. | ||
|
||
from haystack import Document, Pipeline | ||
from haystack.components.builders import PromptBuilder | ||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever | ||
from haystack.document_stores.in_memory import InMemoryDocumentStore | ||
|
||
from haystack_integrations.components.embedders.amazon_bedrock import ( | ||
AmazonBedrockDocumentEmbedder, | ||
AmazonBedrockTextEmbedder, | ||
) | ||
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockGenerator | ||
|
||
generator_model_name = "amazon.titan-text-lite-v1" | ||
embedder_model_name = "amazon.titan-embed-text-v1" | ||
|
||
prompt_template = """ | ||
Context: | ||
{% for document in documents %} | ||
{{ document.content }} | ||
{% endfor %} | ||
Given the context above, answer the question. | ||
Write a full detailed answer. | ||
Provide explanation of why the answer is relevant to the question. | ||
If you cannot answer the question, output "I do not know". | ||
Question: {{ question }}? | ||
""" | ||
|
||
docs = [ | ||
Document(content="User ABC is using Amazon SageMaker to train ML models."), | ||
Document(content="User XYZ is using Amazon EC2 instances to train ML models."), | ||
] | ||
|
||
|
||
doc_embedder = AmazonBedrockDocumentEmbedder(model=embedder_model_name) | ||
docs_with_embeddings = doc_embedder.run(docs)["documents"] | ||
|
||
doc_store = InMemoryDocumentStore() | ||
doc_store.write_documents(docs_with_embeddings) | ||
|
||
|
||
pipe = Pipeline() | ||
pipe.add_component("text_embedder", AmazonBedrockTextEmbedder(embedder_model_name)) | ||
pipe.add_component("retriever", InMemoryEmbeddingRetriever(doc_store, top_k=1)) | ||
pipe.add_component("prompt_builder", PromptBuilder(prompt_template)) | ||
pipe.add_component( | ||
"generator", | ||
AmazonBedrockGenerator( | ||
model=generator_model_name, | ||
# model-specific inference parameters | ||
generation_kwargs={ | ||
"maxTokenCount": 1024, | ||
"temperature": 0.0, | ||
}, | ||
), | ||
) | ||
pipe.connect("text_embedder", "retriever") | ||
pipe.connect("retriever", "prompt_builder") | ||
pipe.connect("prompt_builder", "generator") | ||
|
||
|
||
question = "Which user is using IaaS services for Machine Learning?" | ||
results = pipe.run( | ||
{ | ||
"text_embedder": {"text": question}, | ||
"prompt_builder": {"question": question}, | ||
} | ||
) | ||
results["generator"]["replies"] |