-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor!: Simplify Optimum backend impl
- Loading branch information
Showing
10 changed files
with
399 additions
and
524 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
198 changes: 198 additions & 0 deletions
198
integrations/optimum/src/haystack_integrations/components/embedders/optimum/_backend.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
import copy | ||
import json | ||
from dataclasses import dataclass | ||
from typing import Any, Dict, List, Optional, Union | ||
|
||
import numpy as np | ||
import torch | ||
from haystack.utils import Secret, deserialize_secrets_inplace | ||
from haystack.utils.hf import HFModelType, check_valid_model, deserialize_hf_model_kwargs, serialize_hf_model_kwargs | ||
from huggingface_hub import hf_hub_download | ||
from sentence_transformers.models import Pooling as SentenceTransformerPoolingLayer | ||
from tqdm import tqdm | ||
from transformers import AutoTokenizer | ||
|
||
from optimum.onnxruntime import ORTModelForFeatureExtraction | ||
|
||
from .pooling import OptimumEmbedderPooling | ||
|
||
|
||
@dataclass | ||
class _EmbedderParams: | ||
model: str | ||
token: Optional[Secret] | ||
prefix: str | ||
suffix: str | ||
normalize_embeddings: bool | ||
onnx_execution_provider: str | ||
batch_size: int | ||
progress_bar: bool | ||
pooling_mode: Optional[Union[str, OptimumEmbedderPooling]] | ||
model_kwargs: Optional[Dict[str, Any]] | ||
|
||
def serialize(self) -> Dict[str, Any]: | ||
out = {} | ||
for field in self.__dataclass_fields__.keys(): | ||
out[field] = copy.deepcopy(getattr(self, field)) | ||
|
||
# Fixups. | ||
assert isinstance(self.pooling_mode, OptimumEmbedderPooling) | ||
out["pooling_mode"] = self.pooling_mode.value | ||
out["token"] = self.token.to_dict() if self.token else None | ||
out["model_kwargs"].pop("use_auth_token", None) | ||
serialize_hf_model_kwargs(out["model_kwargs"]) | ||
return out | ||
|
||
@classmethod | ||
def deserialize_inplace(cls, data: Dict[str, Any]) -> Dict[str, Any]: | ||
data["pooling_mode"] = OptimumEmbedderPooling.from_str(data["pooling_mode"]) | ||
deserialize_secrets_inplace(data, keys=["token"]) | ||
deserialize_hf_model_kwargs(data["model_kwargs"]) | ||
return data | ||
|
||
|
||
class _EmbedderBackend: | ||
def __init__(self, params: _EmbedderParams): | ||
check_valid_model(params.model, HFModelType.EMBEDDING, params.token) | ||
resolved_token = params.token.resolve_value() if params.token else None | ||
|
||
if isinstance(params.pooling_mode, str): | ||
params.pooling_mode = OptimumEmbedderPooling.from_str(params.pooling_mode) | ||
elif params.pooling_mode is None: | ||
params.pooling_mode = _pooling_from_model_config(params.model, resolved_token) | ||
|
||
if params.pooling_mode is None: | ||
modes = {e.value: e for e in OptimumEmbedderPooling} | ||
msg = ( | ||
f"Pooling mode not found in model config and not specified by user." | ||
f" Supported modes are: {list(modes.keys())}" | ||
) | ||
raise ValueError(msg) | ||
|
||
params.model_kwargs = params.model_kwargs or {} | ||
|
||
# Check if the model_kwargs contain the parameters, otherwise, populate them with values from init parameters | ||
params.model_kwargs.setdefault("model_id", params.model) | ||
params.model_kwargs.setdefault("provider", params.onnx_execution_provider) | ||
params.model_kwargs.setdefault("use_auth_token", resolved_token) | ||
|
||
self.params = params | ||
self.model = None | ||
self.tokenizer = None | ||
self.pooling_layer = None | ||
|
||
def warm_up(self): | ||
self.model = ORTModelForFeatureExtraction.from_pretrained(**self.params.model_kwargs, export=True) | ||
self.tokenizer = AutoTokenizer.from_pretrained( | ||
self.params.model, token=self.params.token.resolve_value() if self.params.token else None | ||
) | ||
|
||
# We need the width of the embeddings to initialize the pooling layer | ||
# so we do a dummy forward pass with the model. | ||
dummy_input = self.tokenizer(["dummy input"], padding=True, truncation=True, return_tensors="pt").to( | ||
self.model.device | ||
) | ||
dummy_output = self.model(input_ids=dummy_input["input_ids"], attention_mask=dummy_input["attention_mask"]) | ||
width = dummy_output[0].size(dim=2) # BaseModelOutput.last_hidden_state | ||
|
||
self.pooling_layer = SentenceTransformerPoolingLayer( | ||
width, | ||
pooling_mode_cls_token=self.params.pooling_mode == OptimumEmbedderPooling.CLS, | ||
pooling_mode_max_tokens=self.params.pooling_mode == OptimumEmbedderPooling.MAX, | ||
pooling_mode_mean_tokens=self.params.pooling_mode == OptimumEmbedderPooling.MEAN, | ||
pooling_mode_mean_sqrt_len_tokens=self.params.pooling_mode == OptimumEmbedderPooling.MEAN_SQRT_LEN, | ||
pooling_mode_weightedmean_tokens=self.params.pooling_mode == OptimumEmbedderPooling.WEIGHTED_MEAN, | ||
pooling_mode_lasttoken=self.params.pooling_mode == OptimumEmbedderPooling.LAST_TOKEN, | ||
) | ||
|
||
@property | ||
def parameters(self) -> _EmbedderParams: | ||
return self.params | ||
|
||
def pool_embeddings(self, model_output: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: | ||
assert self.pooling_layer is not None | ||
features = {"token_embeddings": model_output, "attention_mask": attention_mask} | ||
pooled_outputs = self.pooling_layer.forward(features) | ||
return pooled_outputs["sentence_embedding"] | ||
|
||
def embed_texts( | ||
self, | ||
texts_to_embed: Union[str, List[str]], | ||
) -> Union[List[List[float]], List[float]]: | ||
assert self.model is not None | ||
assert self.tokenizer is not None | ||
|
||
if isinstance(texts_to_embed, str): | ||
texts = [texts_to_embed] | ||
else: | ||
texts = texts_to_embed | ||
|
||
device = self.model.device | ||
|
||
# Sorting by length | ||
length_sorted_idx = np.argsort([-len(sen) for sen in texts]) | ||
sentences_sorted = [texts[idx] for idx in length_sorted_idx] | ||
|
||
all_embeddings = [] | ||
for i in tqdm( | ||
range(0, len(sentences_sorted), self.params.batch_size), | ||
disable=not self.params.progress_bar, | ||
desc="Calculating embeddings", | ||
): | ||
batch = sentences_sorted[i : i + self.params.batch_size] | ||
encoded_input = self.tokenizer(batch, padding=True, truncation=True, return_tensors="pt").to(device) | ||
model_output = self.model( | ||
input_ids=encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"] | ||
) | ||
sentence_embeddings = self.pool_embeddings(model_output[0], encoded_input["attention_mask"].to(device)) | ||
all_embeddings.append(sentence_embeddings) | ||
|
||
embeddings = torch.cat(all_embeddings, dim=0) | ||
|
||
if self.params.normalize_embeddings: | ||
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) | ||
|
||
embeddings = embeddings.tolist() | ||
|
||
# Reorder embeddings according to original order | ||
reordered_embeddings: List[List[float]] = [None] * len(texts) # type: ignore | ||
for embedding, idx in zip(embeddings, length_sorted_idx): | ||
reordered_embeddings[idx] = embedding | ||
|
||
if isinstance(texts_to_embed, str): | ||
return reordered_embeddings[0] | ||
else: | ||
return reordered_embeddings | ||
|
||
|
||
def _pooling_from_model_config(model: str, token: Optional[str] = None) -> Optional[OptimumEmbedderPooling]: | ||
try: | ||
pooling_config_path = hf_hub_download(repo_id=model, token=token, filename="1_Pooling/config.json") | ||
except Exception as e: | ||
msg = f"An error occurred while downloading the model config: {e}" | ||
raise ValueError(msg) from e | ||
|
||
with open(pooling_config_path) as f: | ||
pooling_config = json.load(f) | ||
|
||
# Filter only those keys that start with "pooling_mode" and are True | ||
true_pooling_modes = [key for key, value in pooling_config.items() if key.startswith("pooling_mode") and value] | ||
|
||
# If exactly one True pooling mode is found, return it | ||
# If no True pooling modes or more than one True pooling mode is found, return None | ||
if len(true_pooling_modes) == 1: | ||
pooling_mode_from_config = true_pooling_modes[0] | ||
pooling_mode = _POOLING_MODES_MAP.get(pooling_mode_from_config) | ||
else: | ||
pooling_mode = None | ||
return pooling_mode | ||
|
||
|
||
_POOLING_MODES_MAP = { | ||
"pooling_mode_cls_token": OptimumEmbedderPooling.CLS, | ||
"pooling_mode_mean_tokens": OptimumEmbedderPooling.MEAN, | ||
"pooling_mode_max_tokens": OptimumEmbedderPooling.MAX, | ||
"pooling_mode_mean_sqrt_len_tokens": OptimumEmbedderPooling.MEAN_SQRT_LEN, | ||
"pooling_mode_weightedmean_tokens": OptimumEmbedderPooling.WEIGHTED_MEAN, | ||
"pooling_mode_lasttoken": OptimumEmbedderPooling.LAST_TOKEN, | ||
} |
101 changes: 0 additions & 101 deletions
101
...rations/optimum/src/haystack_integrations/components/embedders/optimum/optimum_backend.py
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.